首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several finite element techniques used in domains with curved boundaries are discussed and compared, with particular emphasis in two issues: the exact boundary representation of the domain and the consistency of the approximation. The influence of the number of integration points on the accuracy of the computation is also studied. Two‐dimensional numerical examples, solved with continuous and discontinuous Galerkin formulations, are used to test and compare all these methodologies. In every example shown, the recently proposed NURBS‐enhanced finite element method (NEFEM) provides the maximum accuracy for a given spatial discretization, at least one order of magnitude more accurate than classical isoparametric finite element method (FEM). Moreover, NEFEM outperforms Cartesian FEM and p‐FEM, stressing the importance of the geometrical model as well as the relevance of a consistent approximation in finite element simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node‐based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal‐dual algorithm together with a Newton‐like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi‐lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Thin porous membranes with unidirectional oil‐transport capacity offer great opportunities for intelligent manipulation of oil fluids and development of advanced membrane technologies. However, directional oil‐transport membranes and their unique membrane properties have seldom been reported in research literature. Here, it is proven that a dual‐layer nanofibrous membrane comprising a layer of superamphiphobic nanofibers and a layer of superhydrophobic oleophilic nanofibers has an unexpected directional oil‐transport ability, but is highly superhydrophobic to liquid water. This novel fibrous membrane is prepared by a layered electrospinning technique using poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP), PVDP‐HFP containing well‐dispersed FD‐POSS (fluorinated decyl polyhedral oligomeric silsesquioxanes), and FAS (fluorinated alkyl silane) as materials. The directional oil‐transport is selective only to oil fluids with a surface tension in the range of 23.8–34.0 mN m–1. By using a mixture of diesel and water, it is further proven that this dual‐layer nanofibrous membrane has a higher diesel–water separation ability than the single‐layer nanofiber membranes. This novel nanofibrous membrane and the incredible oil‐transport ability may lead to the development of intelligent membrane materials and advanced oil–water separation technologies for diverse applications in daily life and industry.  相似文献   

4.
Non‐overlapping domain decomposition techniques are used to solve the finite element equations and to couple them with a boundary element method. A suitable approach dealing with finite element nodes common to more than two subdomains, the so‐called cross‐points, endows the method with the following advantages. It yields a robust and efficient procedure to solve the equations resulting from the discretization process. Only small size finite element linear systems and a dense linear system related to a simple boundary integral equation are solved at each iteration and each of them can be solved in a stable way. We also show how to choose the parameter defining the augmented local matrices in order to improve the convergence. Several numerical simulations in 2D and 3D validating the treatment of the cross‐points and illustrating the strategy to accelerate the iterative procedure are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Numerical schemes for the approximative solution of advection–diffusion–reaction equations are often flawed because of spurious oscillations, caused by steep gradients or dominant advection or reaction. In addition, for strong coupled nonlinear processes, which may be described by a set of hyperbolic PDEs, established time stepping schemes lack either accuracy or stability to provide a reliable solution. In this contribution, an advanced numerical scheme for this class of problems is suggested by combining sophisticated stabilization techniques, namely the finite calculus (FIC‐FEM) scheme introduced by Oñate et al. with time‐discontinuous Galerkin (TDG) methods. Whereas the former one provides a stabilization technique for the numerical treatment of steep gradients for advection‐dominated problems, the latter ensures reliable solutions with regard to the temporal evolution. A brief theoretical outline on the superior behavior of both approaches will be presented and underlined with related computational tests. The performance of the suggested FIC‐TDG finite element approach will be discussed exemplarily on a bioregulatory model for bone fracture healing proposed by Geris et al., which consists of at least 12 coupled hyperbolic evolution equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We examined, through comparison among the full‐coupling (FC), operator‐splitting (OS), and predictor–corrector (PC) techniques, the effectiveness of using the PC technique to solve depth‐averaged reactive transport equations in the shallow water domain. Our investigation has led to three major conclusions. Firstly, both the OS and PC techniques can efficiently solve reactive transport equations because the advection–diffusion transport equations are solved outside the non‐linear iteration loop and the reaction equations are solved node by node. However, these two techniques may risk sacrificing computational accuracy. Secondly, the OS or PC technique incorporated with the Lagrangian–Eulerian (LE) approach can handle boundary sources more precisely than alternatively with the conventional Eulerian (CE) approach. Thirdly, with the LE approach incorporated, the numerical results from the three techniques agreed highly with one another except when diffusion became significant. In this case, the PC technique's result still matched well with the FC technique's result, but differences between the OS and FC techniques' results arose as diffusion increased. Based on this study, we recommend to apply as a first step the PC technique to solving reactive transport equations with respect to both computational efficiency and accuracy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a novel face‐based smoothed finite element method (FS‐FEM) to improve the accuracy of the finite element method (FEM) for three‐dimensional (3D) problems. The FS‐FEM uses 4‐node tetrahedral elements that can be generated automatically for complicated domains. In the FS‐FEM, the system stiffness matrix is computed using strains smoothed over the smoothing domains associated with the faces of the tetrahedral elements. The results demonstrated that the FS‐FEM is significantly more accurate than the FEM using tetrahedral elements for both linear and geometrically non‐linear solid mechanics problems. In addition, a novel domain‐based selective scheme is proposed leading to a combined FS/NS‐FEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The implementation of the FS‐FEM is straightforward and no penalty parameters or additional degrees of freedom are used. The computational efficiency of the FS‐FEM is found better than that of the FEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user‐defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous‐Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements, boundary locking is avoided and optimal‐order convergence is achieved. This is shown through numerical experiments in reaction–diffusion problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The numerical modelling of interacting acoustic media by boundary element method–finite element method (BEM–FEM) coupling procedures is discussed here, taking into account time‐domain approaches. In this study, the global model is divided into different sub‐domains and each sub‐domain is analysed independently (considering BEM or FEM discretizations): the interaction between the different sub‐domains of the global model is accomplished by interface procedures. Numerical formulations based on FEM explicit and implicit time‐marching schemes are discussed, resulting in direct and optimized iterative BEM–FEM coupling techniques. A multi‐level time‐step algorithm is considered in order to improve the flexibility, accuracy and stability (especially when conditionally stable time‐marching procedures are employed) of the coupled analysis. At the end of the paper, numerical examples are presented, illustrating the potentialities and robustness of the proposed methodologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a parallel three‐dimensional numerical infrastructure for the solution of a wide range of time‐harmonic problems in structural acoustics and vibration. High accuracy and rate of error‐convergence, in the mid‐frequency regime,is achieved by the use of hp‐finite and infinite element approximations. The infrastructure supports parallel computation in both single and multi‐frequency settings. Multi‐frequency solves utilize concurrent factoring of the frequency‐dependent linear algebraic systems and are naturally scalable. Scalability of large‐scale single‐frequency problems is realized by using FETI‐DP—an iterative domain‐decomposition scheme. Numerical examples are presented to cover applications in vibratory response of fluid‐filled elastic structures as well as radiation and scattering from elastic structures submerged in an infinite acoustic medium. We demonstrate both the numerical accuracy as well as parallel scalability of the infrastructure in terms of problem parameters that include wavenumber and number of frequencies, polynomial degree of finite/infinite element approximations as well as the number of processors. Scalability and accuracy is evaluated for both single and multiple frequency sweeps on four high‐performance parallel computing platforms: SGI Altix, SGI Origin, IBM p690 SP and Linux‐cluster. Results show good performance on shared as well as distributed‐memory architecture. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The spring‐layer interface model is widely used in describing some imperfect interfaces frequently involved in materials and structures. Typically, it is appropriate for modelling a thin soft interphase layer between two relatively stiff bulk media. According to the spring‐layer interface model, the displacement vector suffers a jump across an interface whereas the traction vector is continuous across the same interface and is, in the linear case, proportional to the displacement vector jump. In the present work, an efficient three‐dimensional numerical approach based on the extended finite element method is first proposed to model linear spring‐layer curved imperfect interfaces and then applied to predict the effective elastic moduli of composites in which such imperfect interfaces intervene. In particular, a rigorous derivation of the linear spring‐layer interface model is provided to clarify its domain of validity. The accuracy and convergence rate of the elaborated numerical approach are assessed via benchmark tests for which exact analytical solutions are available. The computated effective elastic moduli of composites are compared with the relevant analytical lower and upper bounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Effective simulation of the solid‐liquid‐gas coupling effect in unsaturated porous media is of great significance in many diverse areas. Because of the strongly nonlinear characteristics of the fully coupled formulations for the three‐phase porous media, an effective numerical solution scheme, such as the finite element method with an efficient iterative algorithm, has to be employed. In this paper, an efficient finite element procedure based on the adaptive relaxed Picard method is developed for analyzing the coupled solid‐liquid‐gas interactions in porous media. The coupled model and the finite element analysis procedure are implemented into a computer code PorousH2M, and the proposed procedure is validated through comparing the numerical simulations with the experimental benchmarks. It is shown that the adaptive relaxed Picard method has salient advantage over the traditional one with respect to both the efficiency and the robustness, especially for the case of relatively large time step sizes. Compared with the Newton‐Raphson scheme, the Picard method successfully avoids the unphysical ‘spurious unloading’ phenomenon under the plastic deformation condition, although the latter shows a better convergence rate. The proposed procedure provides an important reference for analyzing the fully coupled problems related to the multi‐phase, multi‐field coupling in porous media. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The paper reports a detailed analysis on the numerical dispersion error in solving 2D acoustic problems governed by the Helmholtz equation using the edge‐based smoothed finite element method (ES‐FEM), in comparison with the standard FEM. It is found that the dispersion error of the standard FEM for solving acoustic problems is essentially caused by the ‘overly stiff’ feature of the discrete model. In such an ‘overly stiff’ FEM model, the wave propagates with an artificially higher ‘numerical’ speed, and hence the numerical wave‐number becomes significantly smaller than the actual exact one. Owing to the proper softening effects provided naturally by the edge‐based gradient smoothing operations, the ES‐FEM model, however, behaves much softer than the standard FEM model, leading to the so‐called very ‘close‐to‐exact’ stiffness. Therefore the ES‐FEM can naturally and effectively reduce the dispersion error in the numerical solution in solving acoustic problems. Results of both theoretical and numerical studies will support these important findings. It is shown clearly that the ES‐FEM suits ideally well for solving acoustic problems governed by the Helmholtz equations, because of the crucial effectiveness in reducing the dispersion error in the discrete numerical model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Explicit schemes are known to provide less numerical diffusion in solving the advection–diffusion equation, especially for advection‐dominated problems. Traditional explicit schemes use fixed time steps restricted by the global CFL condition in order to guarantee stability. This is known to slow down the computation especially for heterogeneous domains and/or unstructured meshes. To avoid this problem, local time stepping procedures where the time step is allowed to vary spatially in order to satisfy a local CFL condition have been developed. In this paper, a local time stepping approach is used with a numerical model based on discontinuous Galerkin/mixed finite element methods to solve the advection–diffusion equation. The developments are detailed for general unstructured triangular meshes. Numerical experiments are performed to show the efficiency of the numerical model for the simulation of (i) the transport of a solute on highly unstructured meshes and (ii) density‐driven flow, where the velocity field changes at each time step. The model gives stable results with significant reduction of the computational cost especially for the non‐linear problem. Moreover, numerical diffusion is also reduced for highly advective problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider linear and non‐linear space–time fractional reaction–diffusion equations (STFRDE) on a finite domain. The equations are obtained from standard reaction–diffusion equations by replacing a second‐order space derivative by a fractional derivative of order β∈(1, 2], and a first‐order time derivative by a fractional derivative of order α∈(0, 1]. We use the Adomian decomposition method to construct explicit solutions of the linear and non‐linear STFRDE. Finally, some examples are given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Two‐dimensional photonic crystal structures are analyzed by a recently developed hybrid technique combining the finite‐element time‐domain (FETD) method and the finite‐difference time‐domain (FDTD) method. This hybrid FETD/FDTD method uses the discontinuous Galerkin method as framework for domain decomposition. To the best of our knowledge, this is the first hybrid FETD/FDTD method that allows non‐conformal meshes between different FETD and FDTD subdomains. It is also highly parallelizable. These properties are very suitable for the computation of periodic structures with curved surfaces. Numerical examples for the computation of the scattering parameters of two‐dimensional photonic bandgap structures are presented as applications of the hybrid FETD/FDTD method. Numerical results demonstrate the efficiency and accuracy of the proposed hybrid method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The Newmark method for the numerical integration of second order equations has been extensively used and studied along the past fifty years for structural dynamics and various fields of mechanical engineering. Easy implementation and nice properties of this method and its derivatives for linear problems are appreciated but the main drawback is the treatment of discontinuities. Zienkiewicz proposed an approach using finite element concept in time, which allows a new look at the Newmark method. The idea of this paper is to propose, thanks to this approach, the use of a time partition of the unity method denoted Time Extended Finite Element Method (TX‐FEM) for improved numerical simulations of time discontinuities. An enriched basis of shape functions in time is used to capture with a good accuracy the non‐polynomial part of the solution. This formulation allows a suitable form of the time‐stepping formulae to study stability and energy conservation. The case of an enrichment with the Heaviside function is developed and can be seen as an alternative approach to time discontinuous Galerkin method (T‐DGM), stability and accuracy properties of which can be derived from those of the TX‐FEM. Then Space and Time X‐FEM (STX‐FEM) are combined to obtain a unified space–time discretization. This combined STX‐FEM appears to be a suitable technique for space–time discontinuous problems like dynamic crack propagation or other applications involving moving discontinuities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Shear locking is a major issue emerging in the computational formulation of beam and plate finite elements of minimal number of degrees of freedom as it leads to artificial overstiffening. In this paper, discontinuous Timoshenko beam and Mindlin‐Reissner plate elements are developed by adopting the Hellinger‐Reissner functional with the displacements and through‐thickness shear strains as degrees of freedom. Heterogeneous beams and plates with weak discontinuity are considered, and the mixed formulation has been combined with the extended finite element method (FEM); thus, mixed enrichment functions are used. Both the displacement and the shear strain fields are enriched as opposed to the traditional extended FEM where only the displacement functions are enriched. The enrichment type is restricted to extrinsic mesh‐based topological local enrichment. The results from the proposed formulation correlate well with analytical solution in the case of the beam and in the case of the Mindlin‐Reissner plate with those of a finite element package (ABAQUS) and classical FEM and show higher rates of convergence. In all cases, the proposed method captures strain discontinuity accurately. Thus, the proposed method provides an accurate and a computationally more efficient way for the formulation of beam and plate finite elements of minimal number of degrees of freedom.  相似文献   

20.
We are concerned with the numerical simulation of wave motion in arbitrarily heterogeneous, elastic, perfectly‐matched‐layer‐(PML)‐truncated media. We extend in three dimensions a recently developed two‐dimensional formulation, by treating the PML via an unsplit‐field, but mixed‐field, displacement‐stress formulation, which is then coupled to a standard displacement‐only formulation for the interior domain, thus leading to a computationally cost‐efficient hybrid scheme. The hybrid treatment leads to, at most, third‐order in time semi‐discrete forms. The formulation is flexible enough to accommodate the standard PML, as well as the multi‐axial PML. We discuss several time‐marching schemes, which can be used à la carte, depending on the application: (a) an extended Newmark scheme for third‐order in time, either unsymmetric or fully symmetric semi‐discrete forms; (b) a standard implicit Newmark for the second‐order, unsymmetric semi‐discrete forms; and (c) an explicit Runge–Kutta scheme for a first‐order in time unsymmetric system. The latter is well‐suited for large‐scale problems on parallel architectures, while the second‐order treatment is particularly attractive for ready incorporation in existing codes written originally for finite domains. We compare the schemes and report numerical results demonstrating stability and efficacy of the proposed formulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号