首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerodynamic shape optimization of a helicopter rotor in hover is presented, using compressible CFD as the aerodynamic model. An efficient domain element shape parameterization method is used as the surface control and deformation method, and is linked to a radial basis function global interpolation, to provide direct transfer of domain element movements into deformations of the design surface and the CFD volume mesh, and so both the geometry control and volume mesh deformation problems are solved simultaneously. This method is independent of mesh type (structured or unstructured) or size, and optimization independence from the flow solver is achieved by obtaining sensitivity information for an advanced parallel gradient-based algorithm by finite-difference, resulting in a flexible method of ‘wrap-around’ optimization. This paper presents results of the method applied to hovering rotors using local and global design parameters, allowing a large geometric design space. Results are presented for two transonic tip Mach numbers, with minimum torque as the objective, and strict constraints applied on thrust, internal volume and root moments. This is believed to be the first free form design optimization of a rotor blade using compressible CFD as the aerodynamic model, and large geometric deformations are demonstrated, resulting in significant torque reductions, with off-design performance also improved.  相似文献   

2.
为分析复合材料层合板壳结构,提出了一种协同转动六节点三边形复合材料曲壳单元。不同于现有的其它协同转动有限单元:1) 该单元中采用了增量可加的矢量型转动变量,因而在非线性增量求解过程中更新节点转动变量非常简单;2) 在计算应变能对局部节点变量的二阶偏微分时,微分的次序是可以交换的,并且通过链式微分计算应变能对整体节点变量的二阶偏微分时,微分的次序也是可以交换的,因此,得到的局部和整体坐标系下的切线刚度矩阵都是对称的;3) 在此有限单元公式中引入了混合公式法,以减轻膜闭锁和剪切闭锁的不利影响。对4个典型算例进行了分析,并与其他文献的结果进行对比,该文提出的单元的可靠性和计算效率得到了验证。  相似文献   

3.
A four‐node corotational quadrilateral elastoplastic shell element is presented. The local coordinate system of the element is defined by the two bisectors of the diagonal vectors generated from the four corner nodes and their cross product. This local coordinate system rotates rigidly with the element but does not deform with the element. As a result, the element rigid‐body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, leading to the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing corotational finite‐element formulations, the resulting element tangent stiffness matrix is symmetric owing to the commutativity of the local nodal variables in calculating the second derivative of strains with respect to these variables. For elastoplastic analyses, the Maxwell–Huber–Hencky–von Mises yield criterion is employed, together with the backward‐Euler return‐mapping method, for the evaluation of the elastoplastic stress state; the consistent tangent modulus matrix is derived. To eliminate locking problems, we use the assumed strain method. Several elastic patch tests and elastoplastic plate/shell problems undergoing large deformation are solved to demonstrate the computational efficiency and accuracy of the proposed formulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The paper proposes a two-level decomposition method for shape optimization of structures. The optimization problem is divided into two subproblems on the basis of the different effects on structural behaviour of different kinds of design variables. A minimum mass subproblem is solved to determine the sizing variables and a constraint evaluation function based on norm optimization is minimized to determine the shape variables. An efficient coupling technique is used between the subproblems to ensure very rapid and steady convergence. Numerical results are presented to demonstrate the effectiveness of the method. © 1997 by John Wiley & Sons, Ltd.  相似文献   

5.
A general topology optimization method, which is capable of simultaneous design of density and orientation of anisotropic material, is proposed by introducing orientation design variables in addition to the density design variable. In this work, the Cartesian components of the orientation vector are utilized as the orientation design variables. The proposed method supports continuous orientation design, which is out of the scope of discrete material optimization approaches, as well as design using discrete angle sets. The advantage of this approach is that vector element representation is less likely to fail into local optima because it depends less on designs of former steps, especially compared with using the angle as a design variable (Continuous Fiber Angle Optimization) by providing a flexible path from one angle to another with relaxation of orientation design space. An additional advantage is that it is compatible with various projection or filtering methods such as sensitivity filters and density filters because it is free from unphysical bound or discontinuity such as the one at θ = 2π and θ = 0 seen with direct angle representation. One complication of Cartesian component representation is the point‐wise quadratic bound of the design variables; that is, each pair of element values has to reside in a given circular bound. To overcome this issue, we propose an isoparametric projection method, which transforms box bounds into circular bounds by a coordinate transformation with isoparametric shape functions without having the singular point that is seen at the origin with polar coordinate representation. A new topology optimization method is built by taking advantage of the aforementioned features and modern topology optimization techniques. Several numerical examples are provided to demonstrate its capability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
发展了一种新型3节点三边形壳单元。计算单元在局部坐标系下的节点变量时,通过采用协同转动法,预先扣除节点整体变量中的刚体转动成分,从而简化了单元的计算公式。不同于现有的其他协同转动单元,在该单元中采用了增量可以直接累加的矢量型转动变量,单元的切线刚度矩阵可以通过直接计算能量泛函对节点变量的二阶偏微分得到,且对节点变量的偏微分次序是可以互换的,因而在局部和整体坐标系下都得到了对称的单元切线刚度矩阵。为消除单元中可能出现的闭锁现象,引入了MacNeal提出的线积分法,分别用沿单元边线方向的膜应变和剪切应变构造新的假定应变场。最后,通过对几个产生了大位移与大转角变形的板壳问题进行分析,检验了该单元的可靠性、计算精度和计算效率。  相似文献   

7.
The consolidation of the link among four fields in computational mathematics and mechanics is the main objective of this work. Surfaces based on NURBS (non‐uniform rational B‐spline), mathematical optimization, the finite element method (FEM) in structural analysis, and automatic differentiation (AD) are applied in shape optimization of shells. This problem is performed taking into account the fact that material and mechanical characteristics influence both, the structural shape and the thickness variation, in order to obtain the best performance with respect to a specific criterium. Some techniques were implemented to modify the shell geometry conserving the same parameterization without a new finite element mesh generation. The shape modification is carried out using an optimization code based on the data obtained by a finite element analysis and gradients evaluation. In this work the optimization procedure is performed using an SQP (Sequential Quadratic Programming) algorithm, where the variables are the control points in homogeneous coordinates, the knot vectors, and the thickness. The functional value is determined by the FEM and gradients are evaluated using AD. Some examples are analyzed and discussed. As a consequence of the shape optimization, shells with high structural performance and aesthetically beautiful shapes can be obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Aerodynamic shape optimization based on Computational Fluid Dynamics can automatically improve the design of aircraft components. In order to obtain the best computational efficiency, the adjoint method is applied on the complete mapping, from the parameters of design to the evaluation of the cost function or constraints. The mapping considered here includes the parameterization, the mesh deformation, the primal-to-dual mesh transformation and the flow equations solved by the unstructured flow solver Edge distributed by FOI. The numerical platform AESOP integrates the flow and adjoint flow solver, mesh deformation schemes, algorithms of shape parameterization and algorithms for gradient-based optimization. The result is a portable and efficient implementation for large scale aerodynamic shape optimization and future applications in multidisciplinary shape optimization. The structure of the program is outlined and examples of applications are presented. The method of shape parameterization using Radial Basis Functions is discussed in more details because it is expected to play a major role in the development of multidisciplinary optimization.  相似文献   

9.
Variable-complexity methods are applied to aerodynamic shape design problems with the objective of reducing the total computational cost of the optimization process. Two main strategies are employed: the use of different levels of fidelity in the analysis models (variable fidelity) and the use of different sets of design variables (variable parameterization). Variable-fidelity methods with three different types of corrections are implemented and applied to a set of two-dimensional airfoil optimization problems that use computational fluid dynamics for the analysis. Variable parameterization is also used to solve the same problems. Both strategies are shown to reduce the computational cost of the optimization.  相似文献   

10.
该文发展了一种适用于光滑壳和非光滑壳的新型协同转动4节点四边形壳单元。在单元中每个节点采用了3个平动自由度和2/3个矢量型转动自由度,每个光滑壳的节点或非光滑壳的非交界节点采用壳中性面法向矢量的2个最小分量作为矢量型转动变量,在非光滑壳中性面交界线上的节点采用3个矢量型转动变量,他们分别是节点定向矢量组中一个定向矢量的较小或最小分量和另一定向矢量的2个最小分量。在非线性增量求解过程中,这些矢量型转动变量可以采用简单的加法将增量累加到原矢量中直接进行更新,且采用了协同转动框架的单元在局部和整体坐标系下得到的切线刚度矩阵都是对称的,结构整体切线刚度矩阵可以采用一维线性存储,可节省大量的计算机存储资源和计算时间。为消除膜闭锁和剪切闭锁的不利影响,采用单点积分方案计算单元内力矢量和切线刚度矩阵,并借鉴Belytschko提出的物理稳定化零能模态控制法来消除可能出现的零能模态。通过对2个光滑壳和2个非光滑壳进行非线性分析,检验了单元的可靠性、计算效率与计算精度。  相似文献   

11.
The numerical design and optimization problems for the reinforced thin-walled structural members on account of a local strength criterion are considered. Two types of the elements of construction are analysed in detail: wafer plates and honeycomb-like shells. The optimal design concerns the following factors: the values of the effective stiffness moduli; the minimization of the weight; the ability to sustain the required ultimate strains. The computations are based on the application of the general homogenized shell model. The effective computational algorithm for a global minimum search for the function of several variables under the restrictions and the computer software are developed and applied. The asymptotically correct results for the effective stiffness moduli and the local stress distributions, which are available in the framework of the general homogenized shell model, ensure that the gain of optimization will not be overlapped by modelling errors. The effectiveness and advantages of the developed approach is illustrated by several numerical examples. The optimal design computational algorithm is extended to the case of fatigue failure analysis.  相似文献   

12.
Designing micro-structures that lead to materials with negative Poisson’s ratio, the so-called auxetics, is studied here with techniques of topology optimization for compliant mechanisms. Compliant mechanisms are monolithic structures that are able to deliver two or more different motions depending on the applied loading. Single and multi-objective topology optimization problems for the design of compliant mechanisms are formulated. This formulation together with simple homogenization thoughts links the behavior of the flexible microstructure with the overall, homogenized continuum and, in particular, the negative Poisson’s ratio effect (auxetic material). Due to the local minima that arise, iterative local search methods are not very effective. On the other hand genuine global optimization algorithms may become too expensive, due to the large number of design variables. A hybrid method based on global optimization algorithms such as Particle Swarm Optimization (PSO) and Differential Evolution (DE), using an iterative local search method as an evaluation tool is proposed and tested. The iterative local method is based on discretization of the design space with truss elements.  相似文献   

13.
Surrogate-based optimization (SBO) has recently found widespread use in aerodynamic shape design owing to its promising potential to speed up the whole process by the use of a low-cost objective function evaluation, to reduce the required number of expensive computational fluid dynamics simulations. However, the application of these SBO methods for industrial configurations still faces several challenges. The most crucial challenge nowadays is the ‘curse of dimensionality’, the ability of surrogates to handle a high number of design parameters. This article presents an application study on how the number and location of design variables may affect the surrogate-based design process and aims to draw conclusions on their ability to provide optimal shapes in an efficient manner. To do so, an optimization framework based on the combined use of a surrogate modelling technique (support vector machines for regression), an evolutionary algorithm and a volumetric non-uniform rational B-splines parameterization are applied to the shape optimization of a two-dimensional aerofoil (RAE 2822) and a three-dimensional wing (DPW) in transonic flow conditions.  相似文献   

14.
An automated multi-material approach that integrates multi-objective Topology Optimization (TO) and multi-objective shape optimization is presented. A new ant colony optimization algorithm is presented and applied to solving the TO problem, estimating a trade-off set of initial topologies or distributions of material. The solutions found usually present irregular boundaries, which are not desirable in applications. Thus, shape parameterization of the internal boundaries of the design region, and subsequent shape optimization, is performed to improve the quality of the estimated Pareto-optimal solutions. The selection of solutions for shape optimization is done by using the PROMETHEE II decision-making method. The parameterization process involves identifying the boundaries of different materials and describing these boundaries by non-uniform rational B-spline curves. The proposed approach is applied to the optimization of a C-core magnetic actuator, with two objectives: the maximization of the attractive force on the armature and the minimization of the volume of permanent magnet material.  相似文献   

15.
Tan Fengjie  Tom Lahmer 《工程优选》2018,50(9):1470-1482
Comparing existing design methodologies for arch-type dams, model-based shape optimization can effectively reduce construction costs and leverage the properties of construction materials. To apply means of shape optimization, suitable variables need to be chosen to formulate the objective function, which is here the volume of the arch dam. A genetic algorithm is adopted as the optimization method, which allows a global search. The reliability index is considered as the main constraint. Its computation is realized by adaptive Kriging Monte Carlo simulation, which visibly increases the analysis efficiency compared with traditional Monte Carlo simulations. Constraints, such as the reliability index and further with respect to the geometry, are taken into consideration by a penalty formulation. By means of this approach, a reliability-based design can be found which ensures both the safety and serviceability of a newly designed arch-type dam.  相似文献   

16.
This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads.

Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.  相似文献   


17.
Numerous hierarchical and nonhierarchical decomposition strategies for the optimization of large scale systems, comprised of interacting subsystems, have been proposed. With a few exceptions, all of these strategies are essentially heuristic in nature. Recent work considered a class of optimization problems, called quasiseparable, narrow enough for a rigorous decomposition theory, yet general enough to encompass many large scale engineering design problems. The subsystems for these problems involve local design variables and global system variables, but no variables from other subsystems. The objective function is a sum of a global system criterion and the subsystems’ criteria. The essential idea is to give each subsystem a budget and global system variable values, and then ask the subsystems to independently maximize their constraint margins. Using these constraint margins, a system optimization then adjusts the values of the system variables and subsystem budgets. The subsystem margin problems are totally independent, always feasible, and could even be done asynchronously in a parallel computing context. An important detail is that the subsystem tasks, in practice, would be to construct response surface approximations to the constraint margin functions, and the system level optimization would use these margin surrogate functions. The present paper extends the quasiseparable necessary conditions for continuous variables to include discrete subsystem variables, although the continuous necessary and sufficient conditions do not extend to include integer variables.  相似文献   

18.
A unified method for continuum shape design sensitivity analysis and optimal design of mechanical components is developed. A domain method of shape design sensitivity analysis that uses the material derivative concept of continuum mechanics is employed. For numerical implementation of shape optimal design, parameterization of the boundary shape of mechanical components is defined and illustrated using a Bezier surface. In shape design problems, nodal points of the finite element model move as the shape changes. A method of automatic regridding to account for shape change has been developed using a design velocity field in the physical domain that obeys the governing equilibrium equations of the elastic solid. For numerical implementation of the continuum shape design sensitivity analysis and automatic regridding, an established finite element analysis code is used. To demonstrate the feasibility of the method developed, shape design optimization of a main engine bearing cap is carried out as an example.  相似文献   

19.
A design optimization procedure is developed using the boundary integral equation (BIE) method for linear elastostatic two-dimensional domains. Optimal shape design problems are treated where design variables are geometric parameters such as the positions and sizing dimensions of entire features on a component or structure. A fully analytical approach is adopted for the design sensitivity analysis where the BIE is implicitly differentiated. The ability to evaluate response sensitivity derivatives with respect to design variables such as feature positions is achieved through the definition of appropriate design velocity fields for these variables. How the advantages of the BIE method are amplified when extended to sensitivity analysis for this category of shape design problems is also highlighted. A mathematical programming approach with the penalty function method is used for solving the overall optimization problem. The procedure is applied to three example problems to demonstrate the optimum positioning of holes and optimization of radial dimensions of circular arcs on structures.  相似文献   

20.
A complete continuous adjoint formulation is presented here for the optimization of the turbulent flow entropy generation rate through a turbine cascade. The adjoint method allows one to have many design variables, but still afford to compute the objective function gradient. The new adjoint system can be applied to different structured and unstructured grids as well as mixed subsonic and supersonic flows. For turbulent flow simulation, the k–ω shear-stress transport turbulence model and Roe's flux function are used. To ensure all possible shape models, a mesh-point method is used for design parameters, and an implicit smoothing function is implemented to avoid the generation of non-smoothed blades. To analyse the capability of the presented algorithm, the shape of a turbine cascade blade is redesigned and a few physical observations are made on how the scheme improves the blade performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号