首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(ethylene terephthalate) (PET) was long‐chain branched (LCB) by ring‐opening reaction with both pyromellitic dianhydride and tetrahydrophthalic acid diglycidyl ester as chain extenders through reactive melt processing. It was found that with the increase of chain extenders dosage, the intrinsic viscosity of PET increased and melt index decreased greatly, while both the tensile strength and impact strength of PET were remarkably improved. The elastic modulus (G′) and viscous modulus (G″) were enhanced by chain branching. Compared with PET, the complex viscosities of LCB‐PET were much higher at full frequency range, and obvious shear thinning was presented. The Cole–Cole curve deviated from the semicircular shape and the curve end was inclined to upward in high viscosity region, indicating the formation of the multiple hierarchical structures. The molecular weight of the branch (MB) was much greater than critical entanglement molecular weight (M e), which essentially confirmed the existence of LCB structure and fairly strong molecular entanglement in the LCB‐PET molecular chain. When subjected to external force, the entanglement point, acting as physical crosslinking point between the molecules, was in favor of increasing the molecular interaction, reducing the molecular slippage, and bearing a large deformation. POLYM. ENG. SCI., 59:1190–1198 2019. © 2019 Society of Plastics Engineers  相似文献   

2.
A combination of reactive extrusion and followed solid‐state polycondensation (SSP) was applied to modify the virgin fiber grade poly(ethylene terephthalate) (v‐PET) and recycled bottle‐grade PET (r‐PET) for melt foaming. Pyromellitic dianhydride (PMDA) and triglycidyl isocyanurate (TGIC) were chosen as the modifiers for the reactive extrusion performed in a twin‐screw extruder. For comparison, commercially available chain extender ADR JONCRYL ADR‐4370‐S was also used. The characterizations of the intrinsic viscosity, i.e., [η], and rheological properties whose changes were correlated to the long chain branches introduced in the molecular structure were performed on the modified PET to evaluate their chain extension extent. The results revealed that the [η] of 1.37 dL/g was obtained for PMDA modified v‐PET while that of 1.15 dL/g for TGIC modified r‐PET. Such difference was attributed to the different reactivity of the two chain extenders with the two types of PET. Increases in shear viscosity and storage modulus, and the high pronounced shear thinning behavior were also observed in the modified PET. Finally, the foamability of the certain modified PET was verified by the batch melt foaming experiments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42708.  相似文献   

3.
There is a high interest in modifying the rheological properties of polyethylene terephthalate (PET) through structural modifications while maintaining its thermoplastic nature. This article reports real‐time spectroscopic and rheological monitoring of the effects of reactive melt modification of PET with a multi‐functional epoxide—triglycidyl isocyanurate (TGIC)—that lead to chain extension/branching and subsequently formation of gel‐like structures. An infrared spectroscopic technique to monitor the simultaneously occurring degradation and chain extension/branching reactions was evaluated. The effects of reaction temperature, shear rate, and residence time were also investigated. Frequency scans at various time intervals on the reacting samples provided information on changes in the degree of branching and melt elasticity. The effect of method of sample preparation for chemorheological testing was also evaluated in this study. A 50% excess of the stoichiometric amount of TGIC for complete reaction with terminal carboxyl groups resulted in a self‐similar polymeric structure of PET near the sol‐gel transition point or a critical gel formation whose linear viscoelastic properties obey scaling law. An estimated fractal dimension from the experimental results was used to quantify the evolution of the branched network structure during the reactive melt modification. Polym. Eng. Sci. 44:474–486, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
Long chain branching (LCB) were added to linear polypropylene (PP) using reactive extrusion in the presence of selected polyfunctional monomers (PFMs) and a peroxide of dibenzoyl peroxide (BPO). Fourier Transformed Infrared spectra (FTIR) directly confirmed the grafting reaction occurred during the reactive extrusion process. Various rheological plots including viscosity curve, storage modulus, Cole‐Cole plot, and Van‐Gurp plots, confirmed that the LCB structure were introduced into modified PPs skeleton after modification. In comparison with linear PP, the branched samples exhibited higher melt strength, lower melt flow index, and the enhancement of crystallization temperature. The LCB level in modified PPs and their melt strength were affected by the type of PFM used and could be controlled by the PFM properties and structure. PFMs with lower boiling points, such as 1, 4‐butanediol diacrylate (BDDA), could not produce LCB structure in modified PP skeleton. The shorter molecular chain bifunctional monomers, such as 1,6‐hexanediol diacrylate (HDDA), favored the branching reaction if their boiling points were above the highest extrusion temperature. And some polar groups, such as hydroxyl, in the molecule of PFM were harmful to the branching reaction, which might be attributed to the harm of the polarity of groups to the dispersion of PFM in PP matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Due to low molecular weight and wide molecular weight distribution, polyethylene terephthalate (PET) shows weak melt strength properties. In this study, the synergistic effect of using different types of chain extenders and catalyst on rheological behavior of PET has been investigated. Long-chain branching is known as a suitable method for developing the structure of PET during reactive melt processing. Thus, pyromellitic dianhydride (PMDA) and pentaerythritol (PENTA) were added to the fiber grade PET. The best formulation was determined based on rheological results, which revealed an improvement in both storage modulus and complex viscosity of PMDA-modified samples. Samples containing 1.5% PMDA and 0.5% PENTA exhibited the best rheological properties. Also, dibutyltin dilaurate (DBTDL) acted as an accelerator for chain extension reaction during reactive melt blending. Subsequently, the rheological properties were improved by increasing the chain extending rate. Moreover, thermal properties such as crystallization and melting temperatures and the degree of crystallinity for modified PET were investigated by differential scanning calorimetry.  相似文献   

6.
The engineering application of poly(ethylene terephthalate) (PET) was limited by its low melt viscosity and strength. Numerous chain extenders were used to enlarge the molecular weight so as to overcome these shortcomings including bisphenol‐A dicyanate (BADCy), which was proven effective in one of our previous work. It was considered that tri‐mer of BADCy through cyclotrimerization might strengthen the effectiveness in chain extender for PET, and the effect of BADCy tri‐mer was studied in this work. With increasing the cyclotrimerization reaction temperature of BADCy monomer, the conversion to tri‐mers was increased. With a fraction of BADCy tri‐mer in the chain extender, the modified PET exhibited higher melt torque, intrinsic viscosity, melt modulus, and melt viscosity than those modified by BADCy monomer alone. BADCy tri‐mer had a positive effect on the chain extension of PET. However, the fraction of tri‐mers in the monomer/tri‐mer mixture should be limited to a certain value; otherwise, the chain extension would be weakened. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
In this work, zinc N,N‐dimethyldithiocarbamate (ZDMC) was used to mediate the melt modification of polypropylene (PP) with 1,6‐hexanediol diacrylate (HDDA) in an internal mixer in the presence of dicumyl peroxide (DCP). Fourier transformed infrared spectroscopy analysis revealed that HDDA was directly grafted onto PP backbone. The dependence of torque on processing time indicated that the presence of ZDMC restrained the degradation of PP, and the end‐torque value increased with the addition of ZDMC. Dynamic rheological measurement indicated that the modified PP possessed higher G′ and lower tan δ at low frequency, displaying an increase in η* and disappearance of Newtonian plateau in η*–ω plot, as well as larger radius of semicircle in Cole–Cole plot. All the rheological characterizations, together with the decreased gel content with the increase of ZDMC, confirmed the formation of long‐chain branching. Subsequently, the foamability of the modified samples was investigated by one‐step compression–molding process. The cellular structure and morphology of the obtained foams were observed by scanning electron microscopy, and the results showed that the addition of ZDMC decreased the cell size, increased the cell density, and brought about well‐defined closed cell structure. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
The reactivity and efficiency of five low molecular weight multifunctional anhydride and epoxy compounds as chemical modifiers of a bottle grade poly(ethylene terephthalate) (PET) resin were evaluated by reactive extrusion under controlled conditions. The two dianhydrides and the three epoxy compounds were used at concentrations based on stoichiometry derived from the measured carboxyl and hydroxyl end group contents of the base resin. Measures of melt viscosity, melt strength, intrinsic viscosity and carboxyl group content were used as criteria of the extent of the modification. Correlations of die pressure with extrudate swell during extrusion, and melt flow index (MFI) with melt strength by off‐line testing of the extrudates permitted the ranking of the modifiers according to their chain‐extending/branching efficiency. For some systems molecular weight increases (related to die pressure/MFI/intrinsic viscosity) accompanied by broadening of the molecular weight distribution (related to die swell/melt strength) were considered excessive. Extrusion foaming experiments with one particular dianhydride modifier that increased the intrinsic viscosity of the resin from 0.71 to 0.9 dl g?1 indicate that production of low‐density foams by a process involving one‐step reactive modification/gas injection foaming is feasible, at conditions not significantly different from those employed in the simple reactive modification of the PET resin. The rheological and structural parameters determined in this work may be used as criteria to specify PET foamable compositions in terms of types and concentrations of modifiers. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
This article describes the chemical modification of polyethylene terephthalate (PET) with a variety of compounds containing reactive glycidyl group(s). Four different modifiers, namely, diglycidyl ether of bisphenol‐A (DGEBA), N,N′‐bis[3(carbo‐2′,3′‐epoxypropoxy) phenyl] pyromellitimide (BGPM), triglycidyl glycerol (TGG), and triglycidyl isocyanurate (TGIC) were compared for their reactivity toward PET in the melt phase. It was found that the presence of tertiary nitrogen in the structure of the epoxide modifiers plays the role of in‐built catalyst for their reaction with the end groups of PET. TGIC as a modifier was selected for the detailed investigation of the simultaneously occurring degradation and chain extension/branching reactions in a batch‐melt mixer. The reactions were followed by torque changes, analyzing the products for residual carboxyl content, and by determining insoluble content. It is shown that the rate of the reactive modification of PET melt by TGIC depends upon stoichiometry, temperature, rate of shear, and the chemical composition and the molecular weight (MW) of the PET resin. In general, the results indicate an increase in melt viscosity and insoluble content, whereas an overall decrease in carboxyl content occurs, as defined by the choice of mixing conditions and stoichiometry. Analysis of the batch kinetic data can be useful to define the process requirements for carrying out the reactive modification in continuous extrusion equipment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 643–652, 2003  相似文献   

10.
Our main objective of this study was to study the parameters affecting the free‐radical melt grafting of maleic anhydride (MA) onto linear low‐density polyethylene (LLDPE) with dicumyl peroxide (DCP) in an internal mixer. The degree of grafting (DG) was measured with titrometry and Fourier transform infrared spectroscopy. The extent of chain‐branching/crosslinking was evaluated with gel content and melt flow index measurements. The flow behavior and melt viscoelastic properties of the grafted samples were measured by using rheometric mechanical spectrometry. Feeding order, DCP and MA concentration, reaction temperature, rotor speed, and grade of LLDPE were among parameters studied. The results show that the reactant concentration (MA and DCP) played a major role in the determination of the grafting yield and the extent of the chain‐branching/crosslinking as competitive side reactions. The order of feeding also had an appreciable effect on the DG and the side reactions. Increasing the rotor speed increased the grafting yield and reduced side reactions by means of intensification of the mixing of reactants into the polyethylene (PE) melt. Chain‐branching dominated the side reactions for lower molecular weight PE, whereas for higher molecular weight PE, chain‐branching led to crosslinking and gel formation. The results of the melt viscoelastic measurements on the grafted samples provided great insight into the understanding of the role of influential parameters on the extent of side reactions and resulting changes in the molecular structure of the grafted samples. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 141–149, 2006  相似文献   

11.
In attempts to produce modified poldified polyethlene terephthalate (PET) ressins with improved rheology for applications requiring high viscosity and elasticity (e.g., lowdensity extrusion foaming, extrusion blow molding), a novel dimidodiepoxide of low molecular weight was evaluated aschain extender/branching ageent. Its reactivity was compared with that of an ethylene/glycidy1 methacrylate copolymer. The diepoxide showed higher reactivity than the copolymer and could be used at muchlower concentrations. The complex chain extension/degradation reactions occurring in the melt were followed in a batch mixer by torque changes, and by analyzing the prouducts for residual carboxy1 and hydroxy1 content, intrinsic viscosity, insoluble content and melt viscoelastic properties. The perliminary results of this work indicated an overall decrease in carboxy1 content, increase in hydroxy1 content, increase in intrinsic viscosity ans melt viscosity and storage modulus values depending on mixing time and the type and concentration of the additive. It is shown that under certain conditions. reaction of PET with less than 1 wt% diimidodiepoxide may produce materials with rheological characteristics similar to thouse of PET grades that are extrusion foamable by gas injection to low densities.  相似文献   

12.
Chain extension/branching by reactive processing is a well-known method to enhance the rheological properties of polymers. In this study, pyromellitic dianhydride, poly(glycolic acid), triglycidyl isocyanurate, and bisphenol A diglycidyl ether were used as chain extender/branching agents to produce branched Polyethylene terephthalate (PETs) with four different molecular structures. According to the linear rheological characterizations, the storage modulus and complex viscosity of modified PET samples enhanced significantly after branching. The shear viscosities of modified PET show a pronounced shear-thinning behavior and a remarkable increase at low frequencies, which can be an indication of the existence of long-chain branches (LCBs) in the molecular structure of polymer and broadening the molecular weight distribution. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analysis were used to investigate the effect of branching agents on the chemical structure and thermal properties of PET, respectively. DSC results show that higher amounts of LCBs lead to lower melting and crystallization temperatures.  相似文献   

13.
A multi‐functional epoxide oligomer, Joncryl ADR‐4368 (ADR), is used as a modifier to prepare foamable poly(ethylene terephthalate) (PET) by reactive extrusion and compared with common tetra‐functional modifier pyromellitic anhydride (PMDA) as a reference. Torque evolution reveals that ADR has a faster reaction with PET than PMDA. The reactions generate long‐chain branches and gel structures, which are confirmed by rheological methods. Shear rheological studies show that PET modified with both ADR and PMDA display higher complex viscosity and lower loss tangent than unmodified sample. In particular, at a given viscosity level, ADR leads to a lower loss tangent than PMDA. Moreover, compared to PMDA, the addition of ADR results in a higher die pressure during extrusion and a more pronounced strain hardening during uniaxial elongation. These results indicate that ADR‐modified PET is less viscous but more elastic than PMDA‐modified PET. Owing to the higher elastic properties, ADR‐modified PET presents better foaming performance in batch foaming process with CO2 as a blowing agent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45805.  相似文献   

14.
Summary: In order to produce modified poly(lactic acid) (PLA) resins for applications requiring high melt viscosity and elasticity (e.g., low‐density foaming, thermoforming), a commercial PLA product has been reactively modified in melt by sequentially adding 1,4‐butanediol and 1,4‐butane diisocyanate as low‐molecular‐weight chain extenders. By varying amounts of the two chain extenders associated to the end group contents of PLA, three resulted samples were obtained. They were then structurally characterized by FTIR spectroscopy and molecular structure analysis. Their thermal, dynamic mechanical thermal properties and melt viscoelastic properties were investigated and compared along with unmodified PLA. The results indicated that chemical modification may be characterized as chain scission, extension, crosslinking, or any combination of the three depending on the chain extender amounts. The increase of PLA molecular weight could be obtained by properly controlling amounts of two chain extenders. The samples with increased molecular weights showed enhanced melt viscosity and elasticity. Such property improvements promised a successful application for modified PLA in a batch foam processing by producing foams with reduced cell size, increased cell density and lowered bulk foam density in comparison with plain PLA foam.

Cellular morphology of a modified PLA foam.  相似文献   


15.
Linear polypropylene was modified by reaction with peroxydicarbonates in a twin screw extruder to obtain varied degrees of long chain branching. The melt strength and the elasticity of the modified polymers were found to increase with the modification. The processability in foaming and thermoforming processes improved with branching and showed an optimum, beyond which higher degrees of long chain branching appeared not to help any further. The branched PP samples showed distinct strain hardening in the elongational viscosity, which was absent from the original linear melts. Melt strength, elasticity and strain hardening increased with the increase of the number of long chain branches on the main chain. The effect of molecular weight and molecular weight distribution of the precursor on the improvement of the processability of the polymer was examined. Polym. Eng. Sci. 44:973–982, 2004. © 2004 Society of Plastics Engineers.  相似文献   

16.
Long‐chain branched polypropylene was prepared using reaction in the molten state in the presence of glycerol and a linear polypropylene functionalized with maleic anhydride (PPg). The concentration of glycerol in the melt was varied in the range from 0.1 to 5 wt % to obtain different levels of branching. FTIR spectroscopy results indicate that the OH groups of glycerol react with the anhydrides on the PPg chains giving place to ester groups. The presence of long‐chain branches in the molecular structure of PPg was confirmed using multiple‐detection size‐exclusion chromatography and rheology. These techniques demonstrate that the level of branching increases with glycerol concentration and that the modification of PPg produces materials with a bimodal distribution of polymer species. Moreover, some of the highly modified materials display gel‐like behavior. The materials also display thermo‐rheological complexity and enhanced activation energy at low frequencies. The crystallization study shows that both the anhydride groups in PPg and the LCBs have opposite nucleating effects. PPg presents the largest activation energy of crystallization and its value decreases with the concentration of glycerol for a given level of crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40357.  相似文献   

17.
Improvements in Young's modulus and strength (tenacity) of poly(ethylene terephthalate) (PET) fibers were obtained by drawing unoriented nanocomposite filaments containing low concentrations (<3 wt%) of various organically modified montmorillonites (MMTs) in a second step at temperatures above the glass transition. Prior to melt spinning, solid‐state polymerization was used to rebuild lost molecular weight, due to MMT‐induced degradation, to a level suitable for producing high strength fibers. Greater improvements in mechanical properties occurred when the MMT stacks were intercalated with PET. A nominal 1 wt% loading of dimethyl‐dehydrogenated tallow quaternary ammonium surface modified MMT in drawn PET fiber showed a 28% and 63% increase in Young's modulus and strength, respectively. Relative to an unfilled PET fiber, these results surpassed the upper bound of the rule of mixtures estimate and suggested that both the type of surface modification and concentration of MMT affect the degree of PET orientation and crystallinity. Furthermore, drawability above Tg and elongation at break increased upon the addition of organically modified MMT to unoriented PET fibers, which was a key distinction of this work from others examining similar systems. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
Commercial blow molding grade recycled high density polyethylene (R‐HDPE) and blow molding grade virgin high density polyethylene (V‐HDPE) were reactively extruded with various compositions (0.00–0.15% wt/wt) of different peroxides in a twin screw extruder. The aim was to produce the extended chain mechanism of a blow molding grade HDPE photopolymer—a polymer resin comprising a significant part of the post consumer recycled plastic stream in Australia. In shear rheological tests, the modified material exhibited an increase in viscoelastic properties and complex viscosity compared to unmodified counterparts. Higher extent of viscoelastic properties enhancement was observed with 1, 3 1, 4 BIS (tert‐butylperoxyisopropyl) Benzene (OP2). This could be attributed to the higher degree of branching. The weight average molecular weight of the all modified materials and its molecular weight distribution (MWD) widened with peroxide modification. These results also support that formation of branching dominates the modification process at molecular level. Increase in branching index (g′) with increase in peroxide composition also confirmed higher degree of branching. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

19.
Two chemically modified chain extended/branched polyethylene terephthalate (PET) resins and one unmodified resin, considered to be linear, were characterized in terms of their melt flow, die swell, and viscoelastic properties. The three resins had reportedly similar nominal intrinsic viscosities but exhibited different viscoelastic behavior. The modified resins had lower melt flow index, higher die swell, higher complex viscosity and higher storage modulus than the unmodified one. The Cole–Cole plots of the resins were independent of temperature, and the data for modified resins formed a group that lay below the data group for the unmodified PET. The distribution of relaxation times was determined. The modified resins had higher relaxation strength, Gi, especially at high relaxation times, λi. The mean relaxation times of the chain extended/branched resins were approximately an order of magnitude higher than that of the unmodified resin, implying pronounced elastic character. The modified resins had better foaming characteristics in extrusion foam processing than the unmodified one owing to their elastic nature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1371–1377, 2000  相似文献   

20.
Melt intercalation of clay with poly(ethylene terephthalate; PET) was investigated in terms of PET chain mobilities, natures of clay modifiers, their affinities with PET, and nanocomposite solid state polymerization (SSP). Twin screw extrusion was used to melt blend PET resins with intrinsic viscosities of 0.48, 0.63, and 0.74 dL/g with organically modified Cloisite 10A, 15A, and 30B montmorillonite clays. Clay addition caused significant molecular weight reductions in the extruded PET nanocomposites. Rates of SSP decreased and crystallization rates increased in the presence of clay particles. Cloisite 15A blends showed no basal spacing changes, whereas the basal spacings of Cloisite 10A and Cloisite 30B nanocomposites increased after melt extrusion, indicating the presence of intercalated nanostructures. After SSP these nanocomposites also exhibited new lower angle X‐ray diffraction peaks, indicating further expansion of their basal spacings. Greatest changes were seen for nanocomposites prepared from the lowest molecular weight PET and Cloisite 30B, indicating its greater affinity with PET and that shorter more mobile PET chains were better able to enter its galleries and increase basal spacing. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号