首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrafine fibers were spun from polyacrylonitrile (PAN) solution in N,N‐dimethylformamide using a homemade electrospinning setup. Fibers with diameter ranging from 80 to 340 nm were obtained. Fiber size and fiber size distribution were investigated for various concentration, applied voltage, and tip‐to‐collector distance using image analysis. The diameters of the electrospun fibers increase when increasing the solution concentration and decrease slightly when increasing the voltage and needle tip‐to‐collector distance. Porosity and air permeability are vital properties in applications of electrospun nanofibrous structures. In this study, effects of process parameters on the porosity and air permeability of electrospun nanoweb were investigated as well. Results of statistical analysis showed that solution concentration and applied voltage have significant influences on pore diameters. It was concluded that nanofiber diameter played an important role on the diameter of pores formed by the intersections of nanofibers. A more realistic understanding of porosity was obtained and a quantitative relationship between nanoweb parameters and its air permeability was established by regression analysis. Two separate models were constructed for predicting air permeability in relation to process parameters. Optimization of electrospinning process for producing nanoweb with desirable air permeability is well achieved by these models. The models presented in this study are of high importance for their ability to predict the air permeability of PAN nanoweb both by process or structure parameters. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The object of this work is to determine the most suitable values of process and solution parameters for electrospinning of polyacrylonitrile (PAN) nanofibers including solution concentration, applied voltage, and working distance between the needle tip and the collector plate. To investigate the effects of those parameters on the fiber morphology, nanofiber mat samples were produced by changing the value of parameters systematically. The scanning electron microscope images of these samples were analyzed to realize the effects of these parameters on the nanofiber morphology. Our results demonstrate that the diameter of the fibers increases with increasing concentration. However, the diameter reduces as the applied voltage and working distance between needle tip and the collector increase up to a certain value. In addition to this, viscosity and applied voltage have a strong effect on the uniformity and morphology of the nanofibers. Moreover, a relationship between spinning distance, voltage supplied, solution concentration, charge density, bead formation, and the diameter of the electrospun PAN nanofiber were established in the study. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The electrospinning technique has been used to prepare composite fibrous mats of polyvinyl alcohol and zirconium n-propoxide. A halide-free synthesis route was adopted to prepare sol of zirconium n-propoxide. The fiber mats were deposited under different process parameters (applied voltage, needle–collector distance and flow rate). Two distinct regions have been noticed in the each fibrous mat for every specific process parameter. The microstructural change in the outer as well as in the inner regions of the composite fibers has been characterized by scanning electron microscopy. The process parameters significantly affect the fiber morphology of both the distinct regions. Outer region fibers showed least beaded morphology and more uniformity in the fiber diameter throughout their length. The average fiber diameter in the inner and outer regions was found to be in the range of 130–225 nm & 115–180 nm, respectively, under the different process parameters.  相似文献   

4.
In the present study, the morphology and mechanical properties of nylon‐6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip‐to‐collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon‐6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon‐6. The morphology of electrospun fibers also depended on tip‐to‐collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
用静电纺丝法制备组织工程所需的纳米纤维及材料,在实验中主要研究了基本的工艺参数对所获纤维直径的影响。纤维或非织造膜由两种溶剂系统所制备:氯仿与N,N-二甲基甲酰胺(DMF)的混合剂及含少量(约40μg)嘧啶的乙酸溶液。为了研究聚合物浓度、DMF含量、施加电压、极距、溶剂系统等因素的影响,使用了扫描电子显微镜、溶液黏度仪、溶液电导率测试仪等。结果表明:随着聚合物浓度上升,纤维的直径先增加后减小;随着溶液中DMF含量的增加,纤维直径不断减小;电压对纤维直径无明显的影响;极距需适中,过大过小都会产生珠状纤维;含少量嘧啶(40μg的乙酸溶剂所获得的聚己内酯(PCL)纳米纤维比由氯仿和DMF的混合溶剂所获得的PCL纳米纤维更加细而均匀。  相似文献   

6.
静电纺丝法纺制聚乳酸纳米纤维无纺毡   总被引:8,自引:0,他引:8  
采用静电纺丝法制备了生物降解聚乳酸(PLLA)纳米纤维无纺毡。分析了纺丝液浓度、电压、接收距离、挤出速度等因素对纤维形态的影响。结果表明:纺丝液的浓度和挤出速度对纤维直径的影响较为明显,溶液挤出速度增大,所得纤维微孔含量及尺寸也增大;适当的电压和接收距离有利于收集无液滴纤维;随着纤维直径的减小,无纺毡的孔径呈减小趋势。在PLLA质量分数为5.7%、挤出速度0.8 mL/h、接受距离 15.5 cm、电压8 kV的静电纺丝条件下,可制备纤维直径为200-400 nm的PLLA纳米纤维无纺毡。  相似文献   

7.
With recent developments in the field of smart textiles, researchers have been working toward fabricating architectures of nanofibers, known as nanoyarns, which mimic the geometry of a conventional yarn. In doing so, one can leverage the unique properties of nanoscale fibers, including high surface‐to‐volume ratio and tunable porosity, for the development of smart garments. In the last 5 years, researchers have produced nanoyarns from a limited number of polymers, including polyacrylonitrile (PAN) and poly(vinylidene fluoride) and its co‐polymers. However, to our knowledge, there has been little research on the solution properties and electrospinning parameters needed to fabricate these higher‐order architectures from nonwoven mats. In this work, a modified electrospinning setup, enclosed in a humidity‐controlled chamber, was developed to fabricate nanoyarns for integration into knitted textiles. We fabricated nanofibers and nanoyarns from PAN/DMF solutions and conducted a systematic study to analyze the effect of solution conductivity, viscosity, and electrospinning parameters (applied voltage, collector distance, and humidity) on fiber and yarn fabrication and morphology. Polymer concentration had a significant effect on fibrous cone and yarn fabrication. Low polymer concentrations resulted in poor cone formation, whereas high concentration resulted in dense cones that were difficult to draw into nanoyarns. Overall, the matrix of electrospinning parameters that resulted in the formation of homogenous nanofiber mats was larger than that of nanoyarn formation. Nanoyarn formation required higher polymer concentration and/or applied voltage than nonwoven mat formation. The influence of these parameters on nanoyarn formation and fiber diameter can be used to expand the library of spinnable nanoyarns and optimize their properties for specific applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46404.  相似文献   

8.
以98%的甲酸为溶剂,不同质量分数的再生丝素溶液和3.5%的壳聚糖溶液以质量比70:30共混静电纺丝。用扫描电子显微镜(SEM)观察了丝素质量分数、电压和极距(喷丝口到收集装置的距离)对丝素/壳聚糖纳米纤维的形貌及直径的影响。正交试验结果表明:在丝素/壳聚糖溶液静电纺丝的工艺参数中,对纤维平均直径的影响因素由大到小依次为丝素质量分数、电压、极距。单因素试验表明:丝素/壳聚糖纳米纤维的平均直径及其分布范围随丝素质量分数的增加而增大;在15 ̄30kV范围内纤维的平均直径随电压增大而减小;当极距大于12cm时,对纤维直径影响不大。最佳工艺条件为:丝素质量分数13%,电压30kV,极距为12cm,制得的纳米纤维平均直径104nm。  相似文献   

9.
通过静电纺丝方法,将氯化锂/N,N–二甲基乙酰胺(Li Cl/DMAc)溶解间位芳纶(PMIA)制备了PMIA纳米纤维,探索了溶液浓度、接收距离、纺丝电压及接收速度等工艺参数对纤维形貌及其直径分布的影响。通过扫描电子显微镜观察了PMIA纳米纤维形貌及应用Image-J软件测量统计了PMIA纤维直径。结果表明,溶液浓度为8%~10%、纺丝电压为16~18 k V、接收距离为15~20 cm,接收速度60~80 r/min的范围内,间位芳纶纳米纤维成型良好,直径分布范围为100~120 nm;PMIA纳米纤维直径随着溶液浓度的减小、静电电压的增加而减小,随着接收速度的增加纤维取向增加。  相似文献   

10.
Electrospinning is a very useful technique for producing polymeric nanofibers by applying electrostatic forces. This study reports on the modeling and optimization of the electrospinning process of gelatin/chitosan, using response surface methodology. The individual and the interaction effects of the gelatin/chitosan blend ratio (50/50, 60/40 and 70/30), applied voltage (20, 25 and 30 kV) and feeding rate (0.2, 0.4 and 0.6 mL h?1) on the mean fiber diameter and standard deviation of the fiber diameter were investigated on optimization section, using scanning electron microscopy. To fabricate the nanofibrous gelatin/chitosan blend, trifluoroacetic acid/dichloromethane was selected as the solvent system. The model obtained for the mean fiber diameter has a quadratic relationship with applied voltage and feeding rate. The interaction between applied voltage and flow rate were found significant but the interactions of blend ratio and flow rate and also blend ratio and applied voltage were negligible. A quadratic relationship was obtained for applied voltage and flow rate with standard deviation of the fiber diameter and there was no interaction between the parameters in the model. The optimum condition for electrospinning of gelatin/chitosan was also introduced using the model obtained in this study. Scanning electron micrographs of human dermal fibroblast cells on the nanofibrous structures show good attachment and proliferation on the fabricated scaffold surface. Electrospun gelatin/chitosan nanofibrous mats have great potential for use as a scaffold for skin tissue engineering. © 2014 Society of Chemical Industry  相似文献   

11.
In this article, polycaprolactone (PCL) nanofibres were processed by electrospinning using a 3:1 ratio of tetrahydrofuran to methanol as solvent. The solvent choice was motivated by the possibility of greener alternatives to the halogenated compounds most often used for electrospinning. The morphologies and fiber diameters resulting from the electrospinning of PCL solutions at room temperature under various conditions are presented in this article. The material morphology was characterized using scanning electron microscopy and a measuring software. The process was optimized for smaller fibers with a narrower fiber diameter distribution by studying parameters such as polymer concentration, applied voltage, the tip to collector distance (TCD), and the solution flow rate. A comparison analysis was used to separate the current resulting from whipping and that resulting from spraying at high voltage. The fiber diameters obtained under various processing conditions were effectively modeled using the terminal jet theory, referenced in several works. Process parameters were optimal for a 20% PCL concentration spun at a flow rate of 0.5 mL/h, with a TCD of 15 cm and an applied voltage of 8 kV. Fibers spun under these conditions displayed diameters of 546 ± 173 nm. POLYM. ENG. SCI., 55:2576–2582, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
Laser melt electrospinning is a novel technology to produce micro/nanofibers. This solvent‐free process is more suitable for biomedical applications. In this work, the electrospun poly(L ‐lactide) (PLLA) fibers with diameters ranging from 2 to 7 μm were prepared by this method, and four influencing factors of melt flow rate (MFR), laser current, collector distance, and applied voltage were investigated on the PLLA fiber diameters and its standard deviation (SD) with an orthogonal design method. The results of range analysis showed the order of significance levels as follows: applied voltage, laser current, collector distance, and MFR for fiber diameter. The SD of fiber diameter can be listed in the following order: applied voltage, MFR, laser current, and collector distance. POLYM. ENG. SCI., 52:1964–1967, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Electrospinning is an interesting technique, which provides a facile and an effective mean in producing nonwoven fibrous materials; however, for producing nanofibers, investigation of the electrospinning conditions is very important. In this study, chitosan, gelatin, and their polyelectrolyte complexes (PECs) were electrospun to prepare nonwoven nanofibrous mats. The concentrations of chitosan and gelatin solutions and electric field (kV/cm) were optimized. The solutions were then blended in different ratios (0–100%) to get electrospun nanofibrous mats. Solution concentration and electric field showed pronounced effect on the electrospinnability and fiber diameter of these systems. Mostly large beads coexisted with the fibers were observed for chitosan at 1 wt% solution concentration, which then showed good electrospinnability at 2 wt% (nanofiber diameter was 145 and 122 nm at 15 and 20 kV/10 cm, respectively), whereas gelatin showed no electrospinnability below 15 wt% solution concentration and a homogenous fibers network at 15 wt% (149 nm at 20 kV/10 cm). The morphology and diameter of chitosan–gelatin PEC nanofibers varied with the chitosan/gelatin ratio. The crystallinity of chitosan was also observed to reduce with electrospinning and addition of gelatin. POLYM. ENG. SCI. 50:1887–1893, 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
Poly(ether sulfone) (PES) nanofibers were prepared by the gas‐jet/electrospinning of its solutions in N,N‐dimethylformamide (DMF). The gas used in this gas‐jet/electrospinning process was nitrogen. The morphology of the PES nanofibers was investigated with scanning electron microscopy. The process parameters studied in this work included the concentration of the polymer solution, the applied voltage, the tip–collector distance (TCD), the inner diameter of the needle, and the gas flow rate. It was found from experimental results that the average diameter of the electrospun PES fibers depended strongly on these process parameters. A decrease in the polymer concentration in the spinning solutions resulted in the formation of nanofibers with a smaller diameter. The use of an 18 wt % polymer solution yielded PES nanofibers with an average diameter of about 80 nm. However, a morphology of mixed bead fibers was formed when the concentration of PES in DMF was below 20 wt % during gas‐jet/electrospinning. Uniform PES nanofibers with an average diameter of about 200 nm were prepared by this electrospinning with the following optimal process parameters: the concentration of PES in DMF was 25 wt %, the applied voltage was 28.8 kV, the gas flow was 10.0 L/min, the inner diameter of the needle was 0.24 mm, the TCD was 20 cm, and the flow rate was 6.0 mL/h. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
Nano‐ and microfibers have a myriad of applications ranging from filtration, composites, energy harvesting, to tissue engineering and drug delivery. Electrospinning, the most common method to produce such fibers, has many limitations including low fiber output and solvent dependency. Centrifugal spinning is a new technique that uses centrifugal forces to form nano‐ and microfibers both from solution and the melt. In this work, the effect of melt temperature, collector distance, rotation speed, and concentration (for polymer solutions) of polycaprolactone were evaluated with respect to fiber morphology, diameter, alignment, and crystallinity. The fiber diameter generally decreased with increasing rotation speed and reduced concentration. Crystallinity for spun fibers decreased compared to the bulk polymer. Fiber alignment was improved with rotation speed for the melt‐spun fibers. The fiber mats were evaluated as tissue scaffolds with neuronal PC12 cells. The cells adhered and extended neurites along the fibers for both melt and solution‐spun scaffolds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41269.  相似文献   

16.
Electrospinning of a polymer melt is an ideal technique to produce highly porous nanofibrous or microfibrous scaffolds appropriate for biomedical applications. In recent decades, melt electrospinning has been known as an eco‐friendly procedure as it eliminates the cytotoxic effects of the solvents used in solution electrospinning. In this work, the effects of spinning conditions such as temperature, applied voltage, nozzle to collector distance and collector type as well as polyethylene glycol (PEG) concentration on the diameter of melt electrospun polylactic acid (PLA)/PEG fibers were studied. The thermal stability of PLA/PEG blends was monitored through TGA and rheometry. Morphological investigations were carried out via optical and scanning electron microscopy. Based on the results, blends were almost stable over the temperature range of melt electrospinning (170 ? 230 °C) and a short spinning time of 5 min. To obtain non‐woven meshes with uniform fiber morphologies, experimental parameters were optimized using ANOVA. While increasing the temperature, applied voltage and PEG content resulted in thinner fibers, PEG concentration was the most influential factor on the fiber diameter. In addition, a nozzle to collector distance of 10 cm was found to be the most suitable for preparing uniform non‐woven PLA/PEG meshes. At higher PEG concentrations, alterations in the collector distance did not affect the uniformity of fibers, although at lower distances vigorous bending instabilities due to polarity augmentation and viscosity reduction resulted in curly fibrous meshes. Finally, the finest and submicron scale fibers were obtained through melt electrospinning of PLA/PEG (70/30) blend collected on a metallic frame. © 2017 Society of Chemical Industry  相似文献   

17.
Polycarbonate (PC) nanofibers are prepared using the air blowing‐assisted electrospinning process. The effects of air blowing pressure and PC solution concentration on the physical properties of fibers and the filtration performance of the nanofiber web are investigated. The air blowing‐assisted electrospinning process produces fewer beads and smaller nanofiber diameters compared with those obtained without air blowing. Uniform PC nanofibers with an average fiber diameter of about 0.170 μm are obtained using an applied voltage of 40 kV, an air blowing pressure of 0.3 MPa, a PC solution concentration of 16%, and a tip‐to‐collection‐screen distance (TCD) of 25 cm. The filtration efficiency improvement of the air blowing‐assisted electrospun web can be attributed to the narrow distribution of fiber diameter and small mean flow pore size of the electrospun web. Performance results show that the air blowing‐assisted electrospinning process can be applied to produce PC nanofiber mats with high‐quality filtration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The production of polymer fibers from the combination of zein and PEO might have great potential in the field of biomaterial. Zein/PEO fibers were obtained in this work through solution electrospinning. An experimental design, 24-1, was used for evaluating the influences of PEO content in the blend, distance from the needle tip to the collector, applied electric voltage and solution flow for average fiber diameter and relative-yield process. Beyond this, the relationship between PEO content in the blend and the fiber properties were evaluated through FTIR, DSC, TG, tensile tests, and cytotoxic tests. The factor that exerts the greatest effect on the average fiber diameter response was the electrical voltage. The increase in PEO content in the blend decreased the thermal stability and increased the degree of the fibers' crystallinity. The mechanical tests showed that fibers with higher elongation were obtained at richer PEO blends. The fibers presented cytocompatible characteristics.  相似文献   

19.
Electrospinning is a process of electrostatic fiber formation which uses electrical forces to produce polymer nanofibers from polymer solution. The electrospinning system consists of a syringe feeder system, a collector system, and a high power supplier. The important parameters in the morphology of electrospun polystyrene fibers are concentration, applied voltage, and solvent properties. Higher concentrations of the polymer solution form thicker fibers and fewer beads. When the concentration is 7 wt%, electrospun fibers have an average diameter of 340 nm, but as the concentration of PS increases to 17 wt%, the fiber diameter gradually thickens to 3,610 nm. The fiber morphology under different solvent mixture ratios and solvent mixtures has also been studied.  相似文献   

20.
Poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) was electrospun into ultrafine fibrous nonwoven mats. Different from the conventional electrospinning process, which involves a positively charged conductive needle and a grounded fiber collector (i.e., positive voltage (PV) electrospinning), pseudo‐negative voltage (NV) electrospinning, which adopted a setup such that the needle was grounded and the fiber collector was positively charged, was investigated for making ultrafine PHBV fibers. For pseudo‐NV electrospinning, the effects of various electrospinning parameters on fiber morphology and diameter were assessed systematically. The average diameters of PHBV fibers electrospun via pseudo‐NVs were compared with those of PHBV fibers electrospun via PVs. With either PV electrospinning or pseudo‐NV electrospinning, the average diameters of electrospun fibers ranged between 500 nm and 4 μm, and they could be controlled by varying the electrospinning parameters. The scientific significance and technological implication of fiber formation by PV electrospinning and pseudo‐NV electrospinning in the field of tissue engineering were discussed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号