首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A parameterization level set method is presented for structural shape and topology optimization of compliant mechanisms involving large displacements. A level set model is established mathematically as the Hamilton–Jacobi equation to capture the motion of the free boundary of a continuum structure. The structural design boundary is thus described implicitly as the zero level set of a level set scalar function of higher dimension. The radial basis function with compact support is then applied to interpolate the level set function, leading to a relaxation and separation of the temporal and spatial discretizations related to the original partial differential equation. In doing so, the more difficult shape and topology optimization problem is now fully parameterized into a relatively easier size optimization of generalized expansion coefficients. As a result, the optimization is changed into a numerical process of implementing a series of motions of the implicit level set function via an existing efficient convex programming method. With the concept of the shape derivative, the geometrical non‐linearity is included in the rigorous design sensitivity analysis to appropriately capture the large displacements of compliant mechanisms. Several numerical benchmark examples illustrate the effectiveness of the present level set method, in particular, its capability of generating new holes inside the material domain. The proposed method not only retains the favorable features of the implicit free boundary representation but also overcomes several unfavorable numerical considerations relevant to the explicit scheme, the reinitialization procedure, and the velocity extension algorithm in the conventional level set method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A bi-directional evolutionary level set method for solving topology optimization problems is presented in this article. The proposed method has three main advantages over the standard level set method. First, new holes can be automatically generated in the design domain during the optimization process. Second, the dependency of the obtained optimized configurations upon the initial configurations is eliminated. Optimized configurations can be obtained even being started from a minimum possible initial guess. Third, the method can be easily implemented and is computationally more efficient. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms topology optimization problem.  相似文献   

4.
A new scheme for imposing a minimum length scale in topology optimization is presented. It guarantees the existence of an optimal design for a large class of topology optimization problems of practical interest. It is formulated as one constraint that is computationally cheap and for which sensitivities are also cheap to compute. The constraint value is ideally zero, but it can be relaxed to a positive value. The effect of the method is illustrated in topology optimization for minimum compliance and design of compliant mechanisms. Notably, the method produces compliant mechanisms with distributed flexibility, something that has previously been difficult to obtain using topology optimization for the design of compliant mechanisms. The term ‘MOLE method’ is suggested for the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

7.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

8.
This paper proposes a topology optimization method for the design of compliant circular path mechanisms, or compliant mechanisms having a set of output displacement vectors with a constant norm, which is induced by a given set of input forces. To perform the optimization, a simple linear system composed of an input force vector, an output displacement vector and a matrix connecting them is constructed in the context of a discretized linear elasticity problem using FEM. By adding two constraints: 1, the dimensions of the input and the output vectors are equal; 2, the Euclidean norms of all local input force vectors are constant; from the singular value decomposition of the matrix connecting the input force vector and the output displacement vector, the optimization problem, which specifies and equalizes the norms of all output vectors, is formulated. It is a minimization problem of the weighted summation of the condition number of the matrix and the least square error of the second singular value and the specified value. This methodology is implemented as a topology optimization problem using the solid isotropic material with penalization method, sensitivity analysis and method of moving asymptotes. The numerical examples illustrate mechanically reasonable compliant circular path mechanisms and other mechanisms having multiple outputs with a constant norm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the use of topology optimization as a synthesis tool for the design of large‐displacement compliant mechanisms. An objective function for the synthesis of large‐displacement mechanisms is proposed together with a formulation for synthesis of path‐generating compliant mechanisms. The responses of the compliant mechanisms are modelled using a total Lagrangian finite element formulation, the sensitivity analysis is performed using the adjoint method and the optimization problem is solved using the method of moving asymptotes. Procedures to circumvent some numerical problems are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
郭旭  赵康 《工程力学》2005,22(5):69-77
发展了一种利用水平集演化技术求解拓扑相关荷载作用下结构拓扑优化问题的数值方法。通过引入水平集函数,我们以隐含的方式对结构的拓扑和形状作了描述,从而把拓扑优化问题转化为了寻求最优水平集函数的数学规划问题。利用基于连续体概念的灵敏度分析技术,构造了用于驱动水平集演化的速度场。由于结构的边界可以用零水平集加以描述,因此利用适当的数学变换,我们可以方便地处理施加在结构上的拓扑相关荷载,这样就避免了以往算法中繁复的边界提取工作以及为了处理拓扑相关荷载所采取的特殊技巧。文末的数值算例表明了提出的优化方法在处理此类问题时所具有的独到的优越性。  相似文献   

12.
A new level set-based multi-objective optimization method is proposed for topological design of hinge-free compliant mechanisms. Firstly, the flexibility requirement of compliant mechanisms is formulated by using the mutual energy. Two types of mean compliance are developed to meet the stiffness requirement. Secondly, several objective functions are developed for designing hinge-free compliant mechanisms based on the weighting method in which a new scheme for determining weighting factors is used. Thirdly, several numerical examples are performed to demonstrate the validity of the proposed method. It is shown that the resulting compliant mechanism configurations contain only strip-like members which are suitable for generating distributed compliance and decreasing stress concentration.  相似文献   

13.
Designing micro-structures that lead to materials with negative Poisson’s ratio, the so-called auxetics, is studied here with techniques of topology optimization for compliant mechanisms. Compliant mechanisms are monolithic structures that are able to deliver two or more different motions depending on the applied loading. Single and multi-objective topology optimization problems for the design of compliant mechanisms are formulated. This formulation together with simple homogenization thoughts links the behavior of the flexible microstructure with the overall, homogenized continuum and, in particular, the negative Poisson’s ratio effect (auxetic material). Due to the local minima that arise, iterative local search methods are not very effective. On the other hand genuine global optimization algorithms may become too expensive, due to the large number of design variables. A hybrid method based on global optimization algorithms such as Particle Swarm Optimization (PSO) and Differential Evolution (DE), using an iterative local search method as an evaluation tool is proposed and tested. The iterative local method is based on discretization of the design space with truss elements.  相似文献   

14.
In this paper, we propose a new BEM for level‐set based topology optimization. In the proposed BEM, the nodal coordinates of the boundary element are replaced with the nodal level‐set function and the nodal coordinates of the Eulerian mesh that maintains the level‐set function. Because this replacement causes the nodal coordinates of the boundary element to disappear, the boundary element mesh appears to be immersed in the Eulerian mesh. Therefore, we call the proposed BEM an immersed BEM. The relationship between the nodal coordinates of the boundary element and the nodal level‐set function of the Eulerian mesh is clearly represented, and therefore, the sensitivities with respect to the nodal level‐set function are strictly derived in the immersed BEM. Furthermore, the immersed BEM completely eliminates grayscale elements that are known to cause numerical difficulties in topology optimization. By using the immersed BEM, we construct a concrete topology optimization method for solving the minimum compliance problem. We provide some numerical examples and discuss the usefulness of the constructed optimization method on the basis of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate.  相似文献   

16.
This article presents a numerical approach of topology optimization with multiple materials for the heat conduction problem. The multiphase level set model is used to implicitly describe the geometric boundaries of material regions with different conductivities. The model of multi-material representation has no emergence of the intermediate density. The optimization objective is to construct the optimal heat conductive paths which improve the efficiency of heat transfer. The dissipation of thermal transport potential capacity is taken as the objective function. The sensitivity analysis is implemented by the adjoint variable method, which is the foundation of constructing the velocity field of the level set equation. The optimal result is gradually realized by the evolution of multi-material boundaries, and the topological changes are naturally handled during the optimization process. Finally, the numerical examples are presented to demonstrate the feasibility and validity of the proposed method for topology optimization of the heat conduction problem.  相似文献   

17.
A procedure to obtain a topology of an optimal structure considering flexibility is presented. The methodology is based on a mutual energy concept for formulation of flexibility and the homogenization method. A multi-objective optimization problem is formulated as an application of compliant mechanism design. Some examples of the design of compliant mechanisms for plane structures are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
This paper aims to propose a meshless Galerkin level set method for shape and topology optimization of continuum structures. To take advantage of the implicit free boundary representation scheme, the design boundary is represented as the zero level set of a scalar level set function, to flexibly handle complex shape fidelity and topology changes by maintaining concise and smooth interface. Compactly supported radial basis functions (CSRBFs) are used to parameterize the level set function and construct the shape functions for meshfree approximations based on a set of unstructured field nodes. The meshless Galerkin method with global weak form is used to implement the discretization of the state equations. This provides a pathway to unify the two different numerical stages in most conventional level set methods: (1) the propagation of discrete level set function on a set of Eulerian grid and (2) the approximation of discrete equations on a set of Lagrangian mesh. The original more difficult shape and topology optimization based on the level set equation is transformed into a relatively easier size optimization, to which many efficient optimization algorithms can be applied. The proposed level set method can describe the moving boundaries without remeshing for discontinuities. The motion of the free boundary is just a question of advancing the discrete level set function in time by solving the size optimization. Several benchmark examples are used to demonstrate the effectiveness of the proposed method. The numerical results show that the proposed method can simplify numerical process and avoid numerical difficulties involved in most conventional level set methods. It is straightforward to apply the proposed method to more advanced shape and topology optimization problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
On account of the inevitable multisource uncertainty factors in compliant mechanisms, which seriously affect the accuracy of output motion, a nonprobabilistic reliability–based topology optimization (NRBTO) framework for compliant mechanisms with interval uncertainties is introduced. Combined with the solid isotropic material with penalization (SIMP) model and the set-theoretical interval method, the uncertainty quantification analysis is conducted to obtain mathematical approximations and boundary laws of considered mean compliance. By normalization treatment of the limit-state function, a new quantified measure of the nonprobabilistic reliability is then defined. The compliance-based NRBTO design method ensures the output motion realizing its target value accurately considering the uncertainty factors. The sensitivities of the nonprobabilistic reliability index with respect to design variables are calculated by the adjoint vector method. Two engineering examples are eventually presented to illustrate the applicability and the validity of the present problem statement as well as the proposed numerical techniques.  相似文献   

20.
Level set methods are becoming an attractive design tool in shape and topology optimization for obtaining efficient and lighter structures. In this paper, a dynamic implicit boundary‐based moving superimposed finite element method (s‐version FEM or S‐FEM) is developed for structural topology optimization using the level set methods, in which the variational interior and exterior boundaries are represented by the zero level set. Both a global mesh and an overlaying local mesh are integrated into the moving S‐FEM analysis model. A relatively coarse fixed Eulerian mesh consisting of bilinear rectangular elements is used as a global mesh. The local mesh consisting of flexible linear triangular elements is constructed to match the dynamic implicit boundary captured from nodal values of the implicit level set function. In numerical integration using the Gauss quadrature rule, the practical difficulty due to the discontinuities is overcome by the coincidence of the global and local meshes. A double mapping technique is developed to perform the numerical integration for the global and coupling matrices of the overlapped elements with two different co‐ordinate systems. An element killing strategy is presented to reduce the total number of degrees of freedom to improve the computational efficiency. A simple constraint handling approach is proposed to perform minimum compliance design with a volume constraint. A physically meaningful and numerically efficient velocity extension method is developed to avoid the complicated PDE solving procedure. The proposed moving S‐FEM is applied to structural topology optimization using the level set methods as an effective tool for the numerical analysis of the linear elasticity topology optimization problems. For the classical elasticity problems in the literature, the present S‐FEM can achieve numerical results in good agreement with those from the theoretical solutions and/or numerical results from the standard FEM. For the minimum compliance topology optimization problems in structural optimization, the present approach significantly outperforms the well‐recognized ‘ersatz material’ approach as expected in the accuracy of the strain field, numerical stability, and representation fidelity at the expense of increased computational time. It is also shown that the present approach is able to produce structures near the theoretical optimum. It is suggested that the present S‐FEM can be a promising tool for shape and topology optimization using the level set methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号