首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Applications of video streaming and real‐time gaming, which generate large amounts of real‐time traffic in the network, are expected to gain considerable popularity in Long Term Evolution networks. Maintaining the QoS such as packet delay, packet loss ratio, median, and cell border throughput requirements in networks dominated by real time traffic, is critical. The existing dimensioning methodology does not consider QoS parameters of real‐time traffic in network dimensioning. Moreover, exhaustive and time‐consuming simulations are normally required to evaluate the performance and QoS of real‐time services. To overcome this problem, we propose an improved radio network dimensioning framework that considers the QoS of real‐time traffic in network dimensioning. In this framework, an analytical model is proposed to evaluate the capacity and performance of real‐time traffic dominant Long Term Evolution networks. The proposed framework provides a fast and accurate means of finding the trade‐off between system load, packet delay, packet loss ratio, required median, and cell border throughput. It also provides network operators with an analytical means for obtaining the minimum number of sites required by jointly considering coverage, capacity and QoS requirements. The accuracy of the proposed model is validated through simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
为了实现吉比特无源光网络带宽分配的公平性,降低网络的传输延时,设计了一种新的媒质访问控制协议,提出了一种新的动态带宽分配算法.其基本思想是:在保证拥有不同QoS业务的用户得到认购速率的基础上,根据网络负载的大小,动态地将某些用户未使用的带宽分配给其他带宽需求大的用户,以提高网络的带宽利用率.仿真结果表明,这种新的算法在严格控制数据传输延时的前提下,能够保证多用户之间带宽分配的公平性.  相似文献   

4.
为了实现吉比特无源光网络带宽分配的公平性,降低网络的传输延时,设计了一种新的媒质访问控制协议,提出了一种新的动态带宽分配算法。其基本思想是:在保证拥有不同QoS业务的用户得到认购速率的基础上,根据网络负载的大小,动态地将某些用户未使用的带宽分配给其他带宽需求大的用户,以提高网络的带宽利用率。仿真结果表明,这种新的算法在严格控制数据传输延时的前提下,能够保证多用户之间带宽分配的公平性。  相似文献   

5.
Recently both ITU and IEEE have standardized solutions for passive optical networks (PONs) operating at gigabit per second line rates and optimized for the transport of packet‐based traffic to improve the efficiency of previously standardized broadband PONs, which used the ATM cell as the data transport unit. The efficiency and performance of PON systems depend on the transmission convergence layer and mainly on the implemented medium access protocol. Although the latter is not part of the standards and left to the implementer, the standards describe a set of control fields that constitute the tool‐set for the media access control (MAC) operation. Though starting from a common and quite obvious basis, the two standards present significant differences with the legacy of Ethernet marking the IEEE approach, while the emphasis of ITU is on demanding services. In this paper we compare the efficiency and performance of the two systems assuming the implementation of as close as possible MAC protocols. The target is twofold: assess and compare the traffic handling potential of each of the two standards and identify the range of applications they can support. Useful insight can also be gained to the MAC tools that could be designed into the next generation extra large WDM PONs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers a challenging problem: to simultaneously optimize the cost and the quality of service in opaque wavelength division multiplexing (WDM) networks. An optimization problem is proposed that takes the information including network topology, traffic between end nodes, and the target level of congestion at each link/node in WDM networks. The outputs of this problem include routing, link channel capacities, and the optimum number of switch ports locally added/dropped at all switch nodes. The total network cost is reduced to maintain a minimum congestion level on all links, which provides an efficient trade-off solution for the network design problem. The optimal information is utilized for dynamic traffic in WDM networks, which is shown to achieve the desired performance with the guaranteed quality of service in different networks. It was found that for an average link blocking probability equal to 0.015, the proposed model achieves a net channel gain in terms of wavelength channels ( ) equal to 35.72 , 39.09 , and 36.93 compared to shortest path first routing and equal to 29.41 , 37.35 , and 27.47 compared to alternate routing in three different networks.  相似文献   

7.
Towards satisfying the requirements of International Mobile Telecommunications–Advanced, both the Institute of Electrical and Electronics Engineers (IEEE) and Third Generation Partnership Project (3GPP) introduced revolutionary wireless technologies, exploiting advanced technologies and architectures. Both IEEE's 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)) and 3GPP's Long Term Evolution have been introduced to accommodate the increasing demand for mobile services and applications. To realize the true potential of these technologies, however, opportunistic frameworks for radio resource management must be designed to exploit the adaptive nature of mobile traffic. The utility optimized quality‐of‐service (QoS) framework proposed in this paper for the mobile WiMAX networks achieves this objective. To maintain support for QoS guarantees, the framework capitalizes on the adaptive nature of WiMAX traffic by individually linking connections with a utility function designed to both uphold the end users’ perceived performance and determine bandwidth allocations by a search tree maximization algorithm. In doing so, bandwidth utilization is maximized for all active connections, and blocking and dropping probabilities for new and handover calls, respectively, are minimized. The framework is evaluated through an extensive simulation model and is shown to outperform state‐of‐the‐art solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper studies and develops efficient traffic management techniques for downlink transmission at the base station (BS) of multi‐service IP‐based networks by combining quality‐of‐service (QoS) provision and opportunistic wireless resource allocation. A delay‐margin‐based scheduling (DMS) for downlink traffic flows based on the delays that each packet has experienced up to the BS is proposed. The instantaneous delay margin, represented by the difference between the required and instantaneous delays, quantifies how urgent the packet is, and thus it can determine the queuing priority that should be given to the packet. The proposed DMS is further integrated with the opportunistic scheduling (OPS) to develop various queueing architectures to increase the wireless channel bandwidth efficiency. Different proposed integration approaches are investigated and compared in terms of delay outage probability and wireless channel bandwidth efficiency by simulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers the network design of intersatellite link (ISL) networks in broadband LEO satellite systems, where the major challenge is the topology dynamics. First, a general method to design convenient ISL topologies for connection‐oriented operation is presented, and a reference topology for numerical studies is derived. A permanent virtual topology is then defined on top of the orbiting physical one, thus forming a framework for discrete‐time dynamic traffic routing. On this basis, heuristic and optimization approaches for the combined routing and dimensioning task, operating on discrete time steps, are presented and their performance is numerically compared. It is shown that minimizing the worst‐case link capacity is an appropriate target function, which can be formulated as linear optimization problem with linear constraints. Using linear programming (LP) techniques, the dimensioning results are clearly better than with simple heuristic approaches. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Modern wireless communication networks frequently have lower application throughput due to higher number of collisions and subsequent retransmission of data packets. Moreover, these networks are characterized by restricted computational capacity due to limited node‐battery power. These challenges can be assessed for deploying fast, reliable network design with resource‐restrained operation by means of concurrent optimization of multiple performance parameters across different layers of the conventional protocol stack. This optimization can be efficiently accomplished via cross‐layer design with the aid of network coding technique and optimal allocation of limited resources to wireless links. In this paper, we evaluate and analyze intersession coding across several source–destination pairs in random access ad hoc networks with inherent power scarcity and variable capacity links. The proposed work addresses the problem of joint optimal coding, rate control, power control, contention, and flow control schemes for multi‐hop heterogeneous networks with correlated sources. For this, we employ cross‐layer design for multiple unicast sessions in the system with network coding and bandwidth constraints. This model is elucidated for global optimal solution using CVX software through disciplined convex programming technique to find the improved throughput and power allocation. Simulation results show that the proposed model effectively incorporates throughput and link power management while satisfying flow conservation, bit error rate, data compression, power outage, and capacity constraints of the challenged wireless networks. Finally, we compare our model with three previous algorithms to demonstrate its efficacy and superiority in terms of various performance metrics such as transmission success probability, throughput, power efficiency, and delay.  相似文献   

11.
Fair packet discarding (FPD) is a mechanism which provides incentives to users to co‐operate in congestion control, so that ATM networks can operate more efficiently. In this paper, we propose a simple congestion control framework consisting of a combination of FPD and ATM Forum's explicit‐rate flow control scheme. We show by simulations that this frame‐work achieves all objectives of congestion control: (1) control congestion, (2) achieve high user‐perceived throughput, (3) maintain fairness and (4) provide protection from misbehaving users. In addition, we equip this framework with two enhancements to improve efficiency, and reduce end‐to‐end delay. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The research of Non-Orthogonal Multiple Access (NOMA) is extensively used to improve the capacity of networks beyond the fifth-generation. The recent merger of NOMA with ambient Backscatter Communication (BackCom), though opening new possibilities for massive connectivity, poses several challenges in dense wireless networks. One such challenge is the performance degradation of ambient BackCom in multi-cell NOMA networks under the effect of inter-cell interference. Driven by providing an efficient solution to the issue, this article proposes a new resource allocation framework that uses a duality theory approach. Specifically, the sum rate of the multi-cell network with backscatter tags and NOMA user equipment is maximized by formulating a joint optimization problem. To find the efficient base station transmit power and backscatter reflection coefficient in each cell, the original problem is first divided into two subproblems, and then the closed form solution is derived. A comparison with the Orthogonal Multiple Access (OMA) ambient BackCom and pure NOMA transmission has been provided. Simulation results of the proposed NOMA ambient BackCom indicate a significant improvement over the OMA ambient BackCom and pure NOMA in terms of sum-rate gains.  相似文献   

13.
Satellite transmissions have an important role in telephone communications, television broadcasting, computer communications, maritime navigation, and military command and control. Moreover, in many situations they may be the only possible communication set‐up. Trends in telecommunications indicate that four major growth market/service areas are messaging and navigation services (wireless and satellite), mobility services (wireless and satellite), video delivery services (cable and satellite), and interactive multimedia services (fibre/cable, satellite). When using geostationary satellites (GEO), the long propagation delay may have great impact, given the end‐to‐end delay user's requirements of relevant applications; moreover, atmospheric conditions may seriously affect data transmission. Since satellite bandwidth is a relatively scarce resource compared to the terrestrial one (e.g. in optical transport networks), and the environment is harsher, resource management of the radio segment plays an important role in the system's efficiency and economy. The radio resource management (RMM) entity is responsible for the utilization of the air interface resources, and covers power control, handover, admission control, congestion control, bandwidth allocation, and packet scheduling. RRM functions are crucial for the best possible utilization of the capacity. RRM functions can be implemented in different ways, thus having an impact on the overall system efficiency. This tutorial aims to provide an overview of satellite transmission aspects at various OSI layers, with emphasis on the MAC layer; some cross‐layer solutions for bandwidth allocation are also indicated. Far from being an exhaustive survey (mainly due to the extensive nature of the subject), it offers the readers an extensive bibliography, which could be used for further research on specific aspects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐media support is an important feature of third generation (3G) wireless communication systems, and Quality of Service (QoS) is a crucial issue, as in any other networking environment. In this paper, the QoS issues in the wireless last‐mile is investigated for 3G systems based on Wideband‐Code division multiple access (W‐CDMA). Supporting multiple rates in the CDMA environment introduces the power assignment problem, which is coupled with the bandwidth and error QoS parameters. Also, multi‐media traffic flows should be classified and serviced in such a way to provision delay guarantees. In this paper, a new framework, namely dynamic resource scheduling (DRS), is described and extensively studied. In order to serve multi‐media services with different requirements, a family of nine algorithms has been developed within the DRS framework. These algorithms can be categorized with respect to single or prioritized queuing architectures, fixed or variable rate bandwidth and power allocation, and variable spreading gain or multi‐code spreading strategies. The paper presents the performance of the DRS algorithms in comparison with each other and with conventional scheduled‐CDMA (S‐CDMA) and proposed schemes in the W‐CDMA standard. The performance for error and throughput QoS provisioning and power control dynamics are explored; advantages, disadvantages and limitations of the algorithms are discussed. The DRS framework is concluded to be a promising QoS architecture, with a simple, flexible, scalable structure that can be configured according to a given traffic scenario. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we discuss different signaling techniques for optical burst-switched networks. We develop a generalized signaling framework for optical burst-switched networks, which provides guidelines about the performance of each signaling technique based on the different parameters in the framework. The two commonly used signaling techniques in optical burst switching are two-way based tell-and-wait (TAW) and one-way based just-enough-time (JET). TAW suffers from high end-to-end packet delay, while JET suffers from high packet loss. There is no signaling technique that offers flexibility in terms of both loss and delay. We propose a hybrid signaling technique called intermediate-node-initiated (INI) signaling for optical burst-switched networks. INI can provide different levels of loss and delay characteristics based on end-user application requirements. The granularity of INI ranges between the one-way based and the two-way based signaling techniques. In INI reservation of channels is initiated at an intermediate node, known as the initiating node, in both forward and backward directions at the same time. We show that by appropriately selecting the initiating node, we can simulate both TAW and JET using the INI signaling technique. Through simulations, we shown that INI performs better than TAW in terms of average end-to-end packet delay and better than JET in terms of burst loss probability. We extend the INI signaling technique to provide QoS differentiation in the OBS core, differentiated INI (DINI), by carefully choosing different initiation nodes depending on delay and loss requirements of end-user applications. Through extensive simulations, we show that the DINI technique outperforms the existing offset-based QoS technique.  相似文献   

16.
梁辉  赵晓晖 《通信学报》2011,32(11):44-50
受组合投资理论的启发,提出了一种既利用历史信道状态信息,同时又有效保证主用户不受次系统传输所产生干扰的新的资源分配算法.该算法以系统速率的方差作为优化目标,同时通过引入用户间干扰门限来衡量次系统对主用户造成的干扰,并利用二次规划的方法对该问题进行求解.最后,给出经典算法与本算法的性能比较,仿真结果表明该算法在保证次系统传输速率保持在一定的期望速率的条件下,使其方差最小,同时又使主用户所受的干扰限定在所能承受的范围内.  相似文献   

17.
Software‐defined networking that separates the control plane from the data plane is envisioned as a promising technology to enable resilient and flexible network management. Tolerating link failures is a fundamental problem in enhancing such network resilience in software‐defined networking. Reactive and proactive fault tolerant schemes for conventional networks may not well balance the fault recovery time and network performance, since the proactive scheme typically underutilizes resources and the reactive scheme usually incurs a longer recovery time. In this paper, we propose a cooperative link failure recovery scheme to find a fine‐grained trade‐off between resource utilization and recovery time by combining reactive and proactive methods. We formalize the problem of link failure recovery as a multiobjective optimization problem and devise a 2‐stage algorithm for it. The first stage of the algorithm guarantees connectivity restoration in an acceptable recovery interval based on fast failover feature supported in OpenFlow protocol, meanwhile it assigns virtual local area network tags to back up paths for achieving a lower memory consumption. The second stage of the algorithm guarantees the quality of service for different applications by adjusting the backup paths after rapid connectivity restoration. Extensive simulations highlight that cooperative link failure recovery scheme can satisfy both the carrier‐grade recovery requirements and quality of service requirements in terms of delay and network bandwidth.  相似文献   

18.
Multimode capability empowers mobile devices to select the appropriate network to meet the requirements of user and applications. However, network selection is a challenging task owing to heterogeneous nature of network access links. At the same time, pervasiveness of mobile communication networks accompanied by the advances in wireless devices has raised the user expectations of persistent service and quality. Therefore, it is important for a mobile device to take situation‐based and timely decisions while selecting an access network to ensure both user's and operator's demand. The existing standard, called IEEE 802.21 (media‐independent handover), considers mobile device signal‐strength parameter for network selection from a list of networks. This research has proposed a ranking algorithm to rank heterogeneous networks based on a set of parameters including user profile and QoS. It selects most suitable network owing to multiple handover scenarios. The simulation results have shown that the proposed scheme has successfully satisfied apparently the contradictory requirements related to user profiles and QoS simultaneously.  相似文献   

19.
In optical burst switching (OBS) networks, burst contentions in OBS core nodes may cause data loss. To reduce data loss, retransmission scheme has been applied. However, uncontrolled retransmission may increase network load significantly and data loss probability defeating the retransmission purpose. In addition, in a priority traffic existing OBS network, OBS nodes may apply different retransmission mechanisms to priorities bursts for quality-of-service (QoS) support. This study has developed a controlled retransmission scheme for prioritized burst segmentation to support QoS in OBS networks. Unlike previous works in the literature, we have set a different value to retransmission probability at each contention and propose a retransmission analytical model for burst segmentation contention resolution scheme. In addition, we have applied the proposed retransmission scheme to the prioritized burst segmentation for QoS support. We have taken into account the load at each link due to both fresh and retransmitted traffic, and have calculated the path blocking probability and byte loss probability (ByLP) for high-priority and low-priority burst to evaluate network performance. An extensive simulation has been proposed to validate our analytical model.  相似文献   

20.
Multiuser multiple‐input multiple‐output orthogonal frequency division multiple access (MIMO‐OFDMA) is considered as the practical method to attain the capacity promised by multiple antennas in the downlink direction. However, the joint calculation of precoding/beamforming and resource allocation required by the optimal algorithms is computationally prohibitive. This paper proposes computationally efficient resource allocation algorithms that can be invoked after the precoding and beamforming operations. To support stringent and diverse quality of service requirements, previous works have shown that the resource allocation algorithm must be able to guarantee a specific data rate to each user. The constraint matrix defined by the resource allocation problem with these data rate constraints provides a special structure that lends to efficient solution of the problem. On the basis of the standard graph theory and the Lagrangian relaxation, we develop an optimal resource allocation algorithm that exploits this structure to reduce the required execution time. Moreover, a lower‐complexity suboptimal algorithm is introduced. Extensive simulations are conducted to evaluate the computational and system‐level performance. It is shown that the proposed resource allocation algorithms attain the optimal solution at a much lower computational overhead compared with general‐purpose optimization algorithms used by previous MIMO‐OFDMA resource allocation approaches. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号