首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, stereocomplexed poly(lactide) (PLA) was investigated by blending linear poly(l ‐lactide) (PLLA) and tri‐block copolymer poly(d ‐lactide) ? (polyethylene glycol) ? poly(d ‐lactide) (PDLA‐PEG‐PDLA). Synthesized PDLA‐PEG‐PDLA tri‐block copolymers with different PEG and PDLA segment lengths were studied and their influences on the degree of sterecomplexation and non‐isothermal crystallization behaviour of the PLLA/PDLA‐PEG‐PDLA blend were examined in detail by DSC, XRD and polarized optical microscopy. A full stereocomplexation between PLLA and PDLA‐PEG4k‐PDLA200 could be formed when the L/D ratio ranged from 7/3 to 5/5 without the presence of PLA homocrystals. The segmental mobility and length of both PEG and PDLA are the dominating factors in the critical D/L ratio to achieve full stereocomplexation and also for nucleation and spherulite growth during the non‐isothermal crystallization process. For fixed PEG segmental length, the stereocomplexed PLA formed showed first an increasing and then a decreasing melting temperature with increasing PDLA segments due to their intrinsic stiff mobility. Furthermore, the effect of PEG segmental mobility on PLA stereocomplexation was investigated. The results clearly showed that the crystallization temperature and melting temperature of stereocomplexed‐PLA kept increasing with increasing PEG segmental length, which was due to PEG soft mobility in the tri‐block copolymers. However, PEG was not favourable for nucleation but could facilitate the spherulite growth rate. Both the PDLA and PEG segmental lengths in the tri‐block copolymers affect the crystallinity of stereocomplexed‐PLA and the stereocomplexation formation process; they have a different influence on blends prepared by solution casting or the melting method. © 2015 Society of Chemical Industry  相似文献   

2.
左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)在共混体系中可形成立构复合(sc)结晶,与聚乳酸(PLA)同质结晶材料相比,sc 结晶材料具有良好的耐热性和耐化学稳定性。因此,sc 结晶是改善PLA 综合性能的一种有效手段。但在PLLA/PDLA 共混体系中,存在各自的同质结晶与两者之间sc 结晶的竞争,所以制备高耐热sc 型PLA 材料的关键之一是理解其sc 结晶的形成条件与机理,进而调控和促进其sc 结晶程度。在PLLA/PDLA 共混物中,sc 结晶受聚合物化学结构、结晶与加工条件等诸多因素影响,其影响规律和机理较复杂。根据PLLA/PDLA共混物sc 结晶行为影响因素的不同,从聚合物分子量、立构规整性、共混比例、分子链拓扑结构、结晶方式与条件、加工助剂和其他组分加入6 个方面出发,详细综述了PLLA/PDLA 共混物sc 结晶及其sc 材料制备的研究进展,以期为高耐热生物基PLA 材料的加工制备提供指导。  相似文献   

3.
Effect of Poly(l ‐lactide)/Poly(d ‐lactide) (PLLA/PDLA) block length ratio on the crystallization behavior of star‐shaped poly(propylene oxide) block poly(d ‐lactide) block poly (l ‐lactide) (PPO–PDLA–PLLA) stereoblock copolymers with molecular weights (Mn) ranging from 6.2 × 104 to 1.4 × 105 g mol?1 was investigated. Crystallization behaviors were studied utilizing differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Only stereocomplex crystallites formed in isothermal crystallization at 140 to 156°C for all samples. On one hand, the overall crystallization rate decreased as PLLA/PDLA block length ratio increased. As PLLA/PDLA block length ratio increased from 7:7 to 28:7, the value of half time of crystallization (t1/2) delayed form 2.85 to 5.31 min at 140°C. On the other hand, according to the Lauritzen–Hoffman theory, the fold‐surface energy (σe) was calculated. σe decreased from 77.7 to 73.3 erg/cm2 with an increase in PLLA/PDLA block length ratio. Correspondingly increase in nucleation density was observed by the polarized optical microscope. Results indicated that the PLLA/PDLA block length ratio had a significant impact on the crystallization behavior of PPO–PDLA–PLLA copolymers. POLYM. ENG. SCI., 55:2534–2541, 2015. © 2015 Society of Plastics Engineers  相似文献   

4.
The effects of incorporated poly(d-lactic acid) (PDLA) as poly(lactic acid) (PLA) stereocomplex crystallites on the isothermal and non-isothermal crystallization behavior of poly(l-lactic acid) (PLLA) from the melt were investigated for a wide PDLA contents from 0.1 to 10 wt%. In isothermal crystallization from the melt, the radius growth rate of PLLA spherulites (crystallization temperature (Tc)≥125 °C), the induction period for PLLA spherulite formation (ti) (Tc≥125 °C), the growth mechanism of PLLA crystallites (90 °C≤Tc≤150 °C), and the mechanical properties of the PLLA films were not affected by the incorporation of PDLA or the presence of stereocomplex crystallites as a nucleating agent. In contrast, the presence of stereocomplex crystallites significantly increased the number of PLLA spherulites per unit area or volume. In isothermal crystallization from the melt, at PDLA content of 10 wt%, the starting, half, and ending times for overall PLLA crystallization (tc(S), tc(1/2), and tc(E), respectively) were much shorter than those at PDLA content of 0 wt%, due to the increased number of PLLA spherulites. Reversely, at PDLA content of 0.1 wt%, the tc(S), tc(1/2), and tc(E) were longer than or similar to those at PDLA content of 0 wt%, probably due to the long ti and the decreased number of spherulites. This seems to have been caused by free PDLA chains, which did not form stereocomplex crystallites. On the other hand, at PDLA contents of 0.3-3 wt%, the tc(S), tc(1/2), and tc(E) were shorter than or similar to those at PDLA content of 0 wt% for the Tc range below 95 °C and above 125 °C, whereas this inclination was reversed for the Tc range of 100-120 °C. In the non-isothermal crystallization of as-cast or amorphous-made PLLA films during cooling from the melt, the addition of PDLA above 1 wt% was effective to accelerate overall PLLA crystallization. The X-ray diffractometry could trace the formation of stereocomplex crystallites in the melt-quenched PLLA films at PDLA contents above 1 wt%. This study revealed that the addition of small amounts of PDLA is effective to accelerate overall PLLA crystallization when the PDLA content and crystallization conditions are scrupulously selected.  相似文献   

5.
The effects of the molecular weight of poly(D ‐lactic acid) (PDLA), which forms stereocomplex (SC) crystallites with poly(L ‐lactic acid) (PLLA), and those of processing temperature Tp on the acceleration (or nucleation) of PLLA homocrystallization were investigated using PLLA films containing 10 wt% PDLA with number‐average molecular weight (Mn) values of 5.47 × 105, 9.67 × 104 and 3.67 × 104 g mol–1 (PDLA‐H, PDLA‐M and PDLA‐L, respectively). For the PLLA/PDLA‐H and PLLA/PDLA‐M films, the SC crystallites that were ‘non’‐melted and those that were ‘completely’ melted at Tp values just above their endset melting temperature and recrystallized during cooling were found to act as effective accelerating (or nucleation) agents for PLLA homocrystallization. In contrast, SC crystallites formed from PDLA‐L, having the lowest Mn, were effective accelerating agents without any restrictions on Tp. In this case, the accelerating effects can be attributed to the plasticizer effect of PDLA‐L with the lowest Mn. The accelerating effects of SC crystallites in the PLLA/PDLA‐H and PLLA/PDLA‐M films was dependent on crystalline thickness for Tp values below the melting peak temperature of SC crystallites, whereas for Tp values above the melting peak temperature the accelerating effects are suggested to be affected by the interaction between the SC crystalline regions and PLLA amorphous regions.  相似文献   

6.
Kelly S. Anderson 《Polymer》2006,47(6):2030-2035
A melt blending procedure was developed for the preparation of poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) stereocomplex crystallites dispersed in a PLLA matrix. All PLLA/PDLA blends were prepared in a batch melt mixer with ≥95% PLLA. Three PDLA homopolymers with a range of molecular weights were used as the minority (≤5%) component. The presence of the stereocomplex in the PLLA matrix was verified by differential scanning calorimetry (DSC) and optical microscopy. The effectiveness of the in situ formed stereocomplex crystallites for nucleating PLLA crystallization was evaluated using self-nucleation and non-isothermal DSC methods. With only 3 wt% of the 14 kg mol−1 PDLA, nucleation efficiencies near 100% could be obtained. In addition, fast crystallization kinetics were observed in isothermal crystallization experiments at 140 °C. The stereocomplex crystallites were much more effective at enhancing the crystallization rate of PLLA compared to talc, a common nucleating agent.  相似文献   

7.
Eamor M. Woo  Ling Chang 《Polymer》2011,52(26):6080-6089
Crystallization of nonequimolar compositions of poly(d-lactic acid) with low-molecular-weight poly(l-lactic acid) (PDLA/LMw-PLLA) blends leads to formation of various fractions of stereocomplexed PLA (sc-crystallites) and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA = 90/10, atomic-force microscopy (AFM) characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites.  相似文献   

8.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

9.
The flax and equivalent proportion of poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) were melt compounded and injection molded to prepare flax‐reinforced polylactide stereocomplex (sc‐PLA) bio‐composite, and the effect of alkali treatment on the structure and properties of flax as well as the flax/sc‐PLA composite was investigated. SEM and FTIR results showed hemicellulose in flax was almost completely removed after alkali treatment and the treated flax (ALK‐flax) bundles were more separated with a cleaner surface than untreated flax (UN‐flax). DSC results showed homo‐crystallites (hc, Tm = 160–170°C) and stereocomplex crystallites (sc, Tm ~210°C) coexisted in sc‐PLA and flax/sc‐PLA composites. Compared with sc‐PLA, the total crystallinity and sc‐crystallinity of flax/sc‐PLA composite increased regardless of whether the flax were treated with alkali, whereas ALK‐flax/sc‐PLA composite showed a little higher crystallinity than UN‐flax/sc‐PLA composite. TGA results confirmed ALK‐flax/sc‐PLA composite had a higher thermal degradation temperature than UN‐flax/sc‐PLA composite. The mechanical tests indicated although the mechanical properties of sc‐PLA increased significantly by reinforcing with flax, the ALK‐flax/sc‐PLA composite showed little lower mechanical properties than UN‐flax/sc‐PLA composite. The alkali treatment of flax had no obvious influence on the Vicat softening temperature (VST) of flax/sc‐PLA composites, a higher heat resistance with VST at ~155°C could be obtained for flax/sc‐PLA composite. POLYM. ENG. SCI., 55:2553–2558, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
PLLA and stereocomplexed polylactide (sc‐PLA) nanofibers were formed by electrospinning solutions of the polymers in HFIP. A highly semi‐crystalline sc‐PLA nanofiber having only sc crystallites was confirmed by WAXD analysis. The diameters of the nanofibers of both polymers decreased slightly when they were annealed at 60 °C, which was near Tg. Enzyme degradation of both as‐spun PLLA and sc‐PLA nanofibers by proteinase K from Tritirachium album was carried out. The rate of degradation of the nanofibers can be controlled by varying annealing conditions, hence the extent of crystallinity.

  相似文献   


11.
Ling Chang 《Polymer》2011,52(1):68-76
Effects of poly(3-hydroxybutyrate) (PHB) on crystalline morphology of stereocomplexing capacity of poly(L- and D-lactic acid) (PLLA and PDLA) were studied by differential scanning calorimetry (DSC), polarizing-light optical microscopy (POM), atomic-force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). When crystallized at high Tc (130 °C or above), morphology transition of stereocomplexed PLA (sc-PLA) occurs from original well-rounded Maltese-cross spherulites to dendritic form in blends of high PHB contents (50 wt.% or higher), where PHB acts as an amorphous species. Microscopy characterizations show that morphology of sc-PLA in PHB/sc-PLA blends crystallized at Tc = 170 °C no longer retain original complexed Maltese-cross well-rounded spherulites; instead, the spherulites are disintegrated and restructured into two types of dendrites: (1) edge-on feather-like dendrites (early growth) and (2) flat-on wedge-like crystal plates (later growth) by growing along different directions and exhibiting different optical brightness. The concentration and/or distribution of amorphous PHB at the crystal growth front, corresponding to variation of the slopes of spherulitic growth rates, is a factor resulting in alteration and restructuring of the sc-PLA spherulites in the blends. Despite of spherulite disintegration, WAXD result shows that these two PHB-induced dendrites still retain the original unit cells of complexes, and thus these two new dendrites are sc-PLA.  相似文献   

12.
H. Yamane  K. Sasai 《Polymer》2003,44(8):2569-2575
Thermal property and crystallization behavior of PLLA blended with a small amount of PDLA (1-5 wt%) were studied. PDLA molecules added in PLLA formed stereocomplex crystallites in the PLLA matrix. When the blend was cooled to a temperature below Tm of PLLA, stereocomplex crystallites acted as nucleation sites of PLLA and enhanced the crystallization of PLLA significantly (heterogeneous nucleation). Such crystallization enhancement was not observed when the blend with lower PDLA content was cooled from 240 °C at which both PLLA crystal and the stereocomplex disappeared. Low molecular weight PDLA isolated in the matrix of PLLA did not form a stereocomplex crystallite with a large surface area enough to act as a nucleation site. On the other hand, high molecular weight PDLA chains formed a large stereocomplex crystallite. With increasing PDLA content, stereocomplex crystallites were more easily formed and they acted as nucleation sites. PLLA crystal near the stereocomplex crystallites has an incomplete structure and showed a melting peak at a lower temperature than pure PLLA crystal.  相似文献   

13.
Linear poly(d ‐lactide) (PDLA) with various molecular weights is synthesized and incorporated into commercial poly(l ‐lactide) (PLLA) with different optical purities. And then, the crystallization, mechanical and thermal properties of the PLLA and PLLA/PDLA cast films are investigated. In the PLLA and PDLA/PLLA specimens with lower optical purity, few homochiral crystallites (HC) form in all the specimens and only a small amount of PLA stereocomplex crystallites (SC) are observed in the blends. The elongation at break of all the specimens is extraordinary high, >300%. Dynamic mechanical analyses indicate that the destruction temperature increases at first, and then depresses as enlarging the molecular weight of PDLA in these blends. For the PLLA and PLLA/PDLA with higher optical purity, more content of HC develops in neat PLLA, and both SC and HC produce in the PLLA/PDLA specimens. However, the strains of neat specimens and binary blends are much lower than that of specimens with lower optical purity. The specimens with higher optical purity exhibit higher destruction temperatures and lower loss factors. The high content of crystals (SC and HC) would act as the physical cross‐linking points and provide a key factor to impede the deformation of neat PLLA and binary blends during stretching, which should result in the fragile behavior of the PLLA and PLLA/PDLA blends with higher optical purity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44730.  相似文献   

14.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Poly(L ‐lactide) (PLLA)/poly(D ‐lactide) (PDLA)/clay nanocomposites are prepared via simple melt blending method at PDLA loadings from 5 to 20 wt%. Formation of the stereocomplex crystals in the nanocomposites is confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD). The internal structure of the nanocomposites has been established by using WAXD and transmission electron microscope analyses. The dispersion of clay in the PLLA/PDLA/clay nanocomposites can be improved as a result of increased intensity of shear during melt blending. The overall crystallization rates are faster in the PLLA/PDLA/clay nanocomposites than in PLLA/clay nanocomposite and increase with an increase in the PDLA loading up to 10 wt%; however, the crystallization mechanism and crystal structure of these nanocomposites remain unchanged despite the presence of PDLA. The storage modulus has been apparently improved in the PLLA/PDLA/clay nanocomposites with respect to PLLA/clay nanocomposite. Moreover, it is found that the hydrolytic degradation rates have been enhanced obviously in the PLLA/PDLA/clay nanocomposites than in PLLA/clay nanocomposite. POLYM. ENG. SCI., 54:914–924, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Effect of the addition of poly(D-lactic acid) (PDLA) as stereocomplex (SC) on crystallization behavior of poly(L-lactic acid) (PLLA) had been systemically investigated. The result indicated that the inclusion of PDLA with higher MW into PLLA exhibited lower t 1/2 and showed accelerated crystallization behavior. Meanwhile, SC formed in blends with higher MW of PDLA exhibited enhanced nucleation activity. In combination with both DSC and WAXD analysis, it was believed that nucleation process was more related to the crystalline size of SC. The result in this study would provide guidance for the application of SC as nucleating agent for the PLA-based products.  相似文献   

17.
Poly(lactic acid) (PLA) is a bio‐based and compostable polymer that has quickly developed into a competitive material, but the control of crystallinity is a bottleneck in extended utilization. The crystallization of PLA has been a rich topic because of the existence of two enantiomeric forms of poly(L‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) can form stereocomplex (SC) crystal with high melting point that can be used to control the crystallization behaviors. The SC crystal was regarded as an effective nucleating agent for promoting the crystallization rate and crystallinity of PLA. We investigated cold crystallization of PLLA/PDLA (1:1) mixture with in situ WAXS measurements and found that the homo‐crystal of PLA formed earlier than the SC‐crystal in the mixture within the measured temperature range, which is different from the melting crystallization. The final crystalline structures are in correspondence with the melting and cold crystallization temperature, and the transition of homo‐PLA (δ to α) is not altered by the crystallization procedure. The SC‐crystal can be detected in both cold and melting crystallization of the mixture at the temperatures lower than 150 °C, which is conflict with the reported results. A new crystallization mechanism of the mixture was proposed to understand the crystallization behaviors in PLLA/PDLA mixtures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45663.  相似文献   

18.
Stereo diblock polylactides (SDB‐PLAs) composed of relatively short poly(d ‐lactide) (PDLA) segments and relatively long poly(l ‐lactide) (PLLA) segments were synthesized to have a wide number‐average molecular weight (Mn) range of 2.5 × 104–2.0 × 105 g mol?1 and d ‐lactyl unit content of 0.9–38.6%. The effects of incorporated short PDLA segments (Mn = 2.0 × 103–7.7 × 103 g mol?1) on crystallization behavior of the SDB‐PLAs were first investigated during heating after complete melting and quenching or during slow cooling after complete melting. Stereocomplex (SC) crystallites can be formed at d ‐lactyl unit content as low as 4.3 and 5.8% for heating and slow cooling, respectively, and for Mn of PDLA segments as low as 2.0 × 103 and 3.5 × 103 g mol?1, respectively. With decreasing Mn and increasing d ‐lactyl unit content, the cold crystallization temperature during heating decreased and the crystallization temperature during slow cooling increased. With increasing d ‐lactyl unit content, the melting enthalpy (ΔHm) of SC crystallites during heating and the crystallinity (Xc) of SC crystallites after slow cooling increased, whereas ΔHm of PLLA homo‐crystallites during heating and Xc of PLLA homo‐crystallites after slow cooling decreased. The total ΔHm of SC crystallites and PLLA homo‐crystallites during heating and the total Xc after slow cooling became a minimum at d ‐lactyl unit content of 10–15% and gave a maximum at d ‐lactyl unit content of 0%. Despite the accelerated crystallization of some of SDB‐PLAs, the low values of total ΔHm and Xc at d ‐lactyl unit content of 10–15% are attributable to the formation of two crystalline species of SC crystallites and PLLA homo‐crystallites.  相似文献   

19.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

20.
Summary: The effects of various additives: poly(D ‐lactic acid) (PDLA), talc, fullerene C60, montmorillonite, and various polysaccharides, on the non‐isothermal crystallization behavior of poly(L ‐lactic acid) (PLLA), during both the heating of melt‐quenched films from room temperature, and the cooling of as‐cast films from the melt, was investigated. When the melt‐quenched PLLA films were heated from room temperature, the overall PLLA crystallization was accelerated upon addition of PDLA or the stereocomplex crystallites formed between PDLA and PLLA, the mixtures containing PDLA, and the mixture of talc and montmorillonite. No significant effects on the overall PLLA crystallization were observed for talc, C60, montmorillonite, and the mixtures containing C60. Such rapid completion of the overall PLLA crystallization upon addition of the aforementioned additives can be ascribed to the increased density (number per unit volume or area) of PLLA spherulites. When the as‐cast PLLA films were cooled from the melt, the overall PLLA crystallization completed rapidly, upon addition of PDLA, talc, C60, montmorillonite, and their mixtures. Such rapid overall PLLA crystallization is attributable to the increased density of the PLLA spherulites and the higher nucleation temperature for PLLA crystallization. In contrast, the addition of various polysaccharides has no significant effect, or only a very small effect, on the overall PLLA crystallization during heating from room temperature or during cooling from the melt. This finding means that the polysaccharides can be utilized as low‐cost fillers for PLLA‐based materials, without disturbing the crystallization of the PLLA. The effect of additives in accelerating the overall PLLA crystallization during cooling from the melt, decreased in the following order: PDLA > talc > C60 > montmorillonite > polysaccharides.

Polarization optical photomicrographs of pure PLLA, and the PLLA‐F film, with the fullerene additive, during cooling from the melt (Process IIB). Both of the photomicrographs were taken at 120 °C.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号