首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在高速数字系统中,信号完整性问题越来越突出,信号速率和设计密度的不断提高使得串扰上升为主要因素之一。先研究了基于矩形谐振腔的串扰抑制方法;然后与三倍线宽方法(3W方法)和有过孔接地的防护线方法的对比分析表明,矩形谐振腔方法对微带线间近端串扰的抑制能力不理想,但对远端串扰的抑制非常有效,在频域仿真中远端串扰幅度可提高12 dB和8 dB,在时域仿真中远端串扰峰值分别为前两种方法的18.2%和23.1%;最后进一步研究了矩形谐振腔的结构参数(间距、长度和宽度)对远端串扰的影响,发现这三个参数存在一组最优值,能最大程度地减小远端串扰。  相似文献   

2.
This article presents a new analytical method to predict crosstalk of a homogeneous terminated two microstrip coupled lines over a ground plane using transmission line theory. The derived formula is frequency and location dependent, which can be used to quickly estimate the crosstalk of a coupled line. Also, the effect of the geometrical parameters of the lines and load are included in the derived formula. Presented method can be used for the other types of coupled lines including lossy or lossless lines. To verify the accuracy of the introduced method, a few microstrip coupled line structures with different geometrical parameters are considered numerically and experimentally. The results of crosstalk based on the proposed analytical methods, simulation study using high frequency structure simulator and those obtained by measurements are reported and compared with each other. It is shown that our proposed method accurately estimates the amount of crosstalk for a two microstrip coupled lines.  相似文献   

3.
In this article, an analytical method is presented to precisely estimate the crosstalk of uniform and nonuniform microstrip‐coupled transmission lines (TLs) in frequency domain using modified transmission matrix. The obtained expression is quantitatively related in terms of the geometrical parameters of the coupled lines. A straightforward procedure is presented to obtain a closed form formula to accurately determine the crosstalk of a microstrip‐coupled line. For a nonuniform structure, the TL is divided into a few series of uniform sections with a specific modified transmission matrix. The total modified transmission matrix is determined by multiplying the modified transmission matrix of different sections and then the crosstalk can be calculated using the total modified transmission matrix. Several structures are considered to confirm the validity of the presented method. It is shown that the obtained results are in a good agreement with those obtained by simulation and measurement.  相似文献   

4.
In this article, two cascaded defected microstrip structures (CDMSs) are proposed to increase the effective inductance. So the cutoff frequencies of filters made by CDMSs can be controlled. The proposed CDMSs have wider stopband characteristic and sharper transition from passband to stopband than defected microstrip structure (DMS). To show the behavior variations of the effective inductance, the DMS and CDMSs have been analyzed, compared, and their design parameters are formulated. These parameters are necessary for a fast filter design procedure. Also, the models of DMS and CDMSs using the very simple lumped element forms are presented according to the physical parameters. The results of the proposed models have been compared with those obtained by full wave analysis. To verify the proposed DMS model, the comparison in response not only has been considered in amplitude but also in phase of all S‐parameters of proposed model and full wave analysis. It is obvious that the stopband is enhanced by periodically cascading the DMS. Surviving of EMC aspects between DMS, DGS, and CDMS is considered and compared. Finally, the theoretical results are validated by comparison with simulations of the structures and experimental results. The simulations from modeling results are found to be in good agreement with the full wave analysis and measurement results in the range of 0.5–35 GHz. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

5.
随着宽带接入网速率提升,VDSL2技术成为最后一公里的主流接入方式。用户数量急剧增加使传输线路之间串扰成为制约VDSL2系统性能的重要因素,线路之间串扰分为近端串扰(NEXT)和远端串扰(FEXT),VDSL2系统采用正交频分复用调制技术,近端串扰可以通过滤波器滤除,远端串扰却无法消除。主要研究VDSL2系统远端串扰噪声消除的方法,提出远端串扰噪声如何进行评估和计算,推导出远端串扰噪声计算公式,通过公式可以计算出每条线路受到其他线路串扰噪声的大小,然后发送信号时通过串扰噪声预抵消运算,接收到的信号就能成功消除串扰噪声的影响,提高了接收信号的SNR值,进而提升了VDSL2传输速率。  相似文献   

6.
A simple structure of broadband circularly polarized slot antenna based on coplanar waveguide (CPW) feeding is proposed in this article. To obtain circular polarization with a single feed, a transition from microstrip to CPW is designed to excite the even and odd modes of the CPW simultaneously. By adjusting the relative position and dimensions of the two circular patches introduced at the end of microstrip line and CPW, a 90° phase difference between two modes can be produced. When the two modes are coupled into the wide slot antenna, broadband circular polarization operation can be realized. The 10‐dB reflection coefficient bandwidth of the proposed antenna is 88.2% (2.49‐6.42 GHz) and 3‐dB AR bandwidth attains 50% (2.72‐4.49 GHz).  相似文献   

7.
A dual‐band dual‐mode microstrip Yagi antenna with quasi‐end‐fire radiation patterns is proposed in this paper. It consists of five radiating patches driven by a single slot‐loaded patch placed in the middle. Meanwhile, two slot‐loaded parasitic patches are symmetrically located on two sides of the driven patch, respectively. In the lower band, the five patches involved resonate at TM01 mode. While in the upper band, all the patches resonate at TM02 mode. In order to ensure quasi‐end‐fire radiations in the both bands, four slots are symmetrically etched around the strongest surface currents of each patch resonating at TM02 mode. As a result, the resonant frequency of TM02 mode is decreased dramatically, while the resonant frequency of TM01 mode almost remains unchanged. With these arrangements, the separations between any two of the adjacent patches at their centers satisfy the requirements in design of the microstrip Yagi antenna in both bands, so as to realize the dual‐band dual‐mode microstrip Yagi antenna on a single‐layer substrate. Finally, an antenna prototype is fabricated and tested. The measured results reveal that the dual operating bands of 2.76~2.88 and 4.88~5.03 GHz for |S11| < ?10 dB are satisfactorily achieved. Most importantly, the proposed antenna can indeed realize the quasi‐end‐fire radiation patterns in dual operating bands.  相似文献   

8.
The effect of finite‐size recessed ground on characteristic features of a microstrip transmission line is investigated and verified experimentally on alumina substrate of height 0.127 mm with εr = 9.8 at 60 GHz. A measured characteristic impedance of 238 Ω, effective dielectric constant of 3.09, and attenuation constant of 3.4 Np/m is achieved by using a recessed ground of dimensions (width × depth) 4.5 mm × 0.95 mm, below a 50‐Ω (on conventional ground plane) microstrip line. The effect of recessed ground on lumped equivalent circuit elements of microstrip line discontinuities including series‐gap, open‐end, and step discontinuities is also studied. To show the usefulness of recessed ground microstrip line, a prototype of fifth‐order Chebyshev‐type recessed ground end‐coupled band‐pass filter is designed and fabricated at 60 GHz. The filter exhibits measured insertion loss lower than 2.2 dB and return loss better than 13 dB over 3‐dB passband of 6% centered at 60 GHz. The measured results show good consistency with simulated results and confirm the usefulness of recessed ground plane microstrip line.  相似文献   

9.
In this work, new trace configurations using stepped impedance elements and open‐circuited stubs to reduce far‐end crosstalk in printed circuit board (PCB) interconnects are introduced. The goal of this study is to reduce crosstalk without using additional PCB components in the design. Specifically, we use stepped impedance elements and open‐circuited stubs of uniform length and width on the victim traces to suppress high‐frequency electromagnetic interference and to equalize propagation delays or capacitive and inductive couplings between PCB traces. The overall design is very similar to the usual low‐pass filter configurations, which are difficult to implement in the prototype testing. The proposed approach shows remarkably better results when compared with conventional intervening guard trace schemes. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

10.
The theoretical analysis and engineering implementation of the planar substrate‐integrated waveguide (SIW) ferrite junction circulator have been proposed in this article. The ferrite junction circulator is implemented in the form of SIW, taking the features of low profile, small volume and easy integration with other planar circuits. The design strategies of the device have been introduced, including the design consideration of the microstrip transition. One C‐band prototype of SIW ferrite junction circulator has been fabricated and measured. The experimental results indicate the bandwidth is about 33% at −15 dB isolation and the maximum isolation is near 40 dB. However, the insertion loss is a little big, owing to the imperfect dielectric material and fabrication inaccuracy. The SIW ferrite junction circulator and the microstrip transition are integrated into a same substrate, resulting in a very compact planar ferrite junction circulator and indicating potential applications in integrated communication and radar systems. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

11.
The finite difference time domain modeling technique is used to model the near end and far end crosstalk on coupled microstrip structures used in multichip modules. The lines are terminated in lumped resistors which closely, but not exactly, match the lines. One line is excited by a Gaussian voltage pulse produced by a Thévenin equivalent voltage source. It is shown that adding dielectric strips in the substrate below the conducting lines will reduce the peak crosstalk by as much as 80%. Eight different configurations are modeled consisting of dielectric strips with different dielectric constant combinations. All configurations are modeled with and without a metal case in order to make sure that the crosstalk reduction persists when the structure is enclosed in a metallic enclosure (this would be the case for multichip modules). The results show that using dielectric strips with the smallest possible dielectric constant reduces crosstalk the most. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
This work proposes an advancement of microwave planar resonator sensor with high sensitivity for microfluidic dielectric characterization. The physical design was employed based on circular substrate integrated waveguide (CSIW) with an integration of defected microstrip structure (DMS). This approach can be applied to accelerate the dielectric detection, structure miniaturization and material differentiation. The presented sensor operates based on variations in the dielectric properties of solvents in the vicinity of a planar open‐ended microstrip resonator device. Further analysis in volume and concentration were performed to validate the reliability of the sensor. Validation and functionality of the sensor were investigated by experimental and results comparison. A mathematical model was developed to determine the dielectric constant and the loss tangent of the microfluidic samples. The average error detection has a lower percentage value of 0.11% by comparison to the commercial and ideal dielectric properties of the aqueous samples. The maximum relative error detection, ±0.37% implied better accuracy compared to the existing resonator sensors with more than 400 of the Q‐factor. The proposed CSIW‐DMS sensor was found to give higher accuracy and detection response; besides easier to fabricate, and compatible for integration with other electronic components in an RF sensor for variety of applications.  相似文献   

13.
In this letter, the design and fabrication of the linear microstrip array antenna by series fed are presented. The array antenna consists of 16 reflector slot‐strip‐foam‐inverted patch (RSSFIP) antennas. The gain and efficiency of the linear array antenna is 16.6 dBi and 61% at 10 GHz, respectively. The antenna has a bandwidth (BW) of 45% from 8.1 to 12.8 GHz (S11 < ?10 dB) and side lobe level (SLL) of ?25.6 dB across the BW of 19.2% from 9.4 to 10.4 GHz. These are achieved by using a microstrip series fed with defected ground structure (DGS) to feed the patch array antenna. Good agreement is achieved between measurement and simulation results.  相似文献   

14.
Tunable microstrip lowpass filters (LPFs) with a good performance are used in most telecommunication systems. In this article, a third‐order circuit with stepped impedance resonator is used to design LPF, and suppression cells are used to improve the performance of the filter in stopbands up to 20 GHz. The ?3 dB cut‐off frequency can be controlled in the range of 0.35 to 1 GHz with the tuning range of 96%. Rejection stopbands of 30 dB (type‐I) and 20 dB (type‐II) can be extended to more than 20 GHz. For the passband, the insertion loss variations are in the range of 0.35 to 2.12 dB. The proposed tunable LPF has a sharp roll‐off rate (42‐96 dB/GHz). The varactor‐tuned microstrip LPF is designed, simulated, fabricated, and measured. The results of simulation and measurement for the proposed LPF are in good agreement. The size of the proposed tunable LPF is small and the filter dimensions are equal to 0.267λg × 0.13λg.  相似文献   

15.
A wideband circularly polarized printed antenna is proposed and fabricated, which employs monofilar spiral stubs and a slit in the asymmetrical ground plane which are fed by an inverted L‐shaped microstrip feedline. The CP operation is realized by embedding an inverted‐L shaped strip and modified ground plane and can be markedly improved by loading monofilar spiral stubs asymmetrically connected at the edge of the ground plane. After optimization, the measured results of the finally structure demonstrate that a 10‐dB bandwidth of 67.6% from 4.6 to 9.3 GHz and a 3‐dB axial‐ratio bandwidth (ARBW) for circular polarization (CP) of 60.1% from 5 to 9.3 GHz could be achieved which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band. To explain the mechanism of broadband circular polarization operation, the analysis of magnetic fields distributions and a parametric study of the design are given. Compared to other recent works, a simpler structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna.  相似文献   

16.
A novel design of a balanced wideband power divider (PD) with enhanced common‐mode (CM) suppression is proposed. The top and bottom layers of the structure contain tapered microstrip line. Those microstrip lines are coupled via slotline in the ground plane, which is located at the middle layer. With appropriate placement of the slotline, the coupling between the slotline mode and the differential‐mode (DM) signals can be maximized, while that between the slotline mode and the CM signals can be minimized. Simulated and measured results show that the proposed PD has equal power division, low insertion loss, and good return loss. In the measurement, the fractional bandwidth of the measured ?10 dB (DM) return loss is about 101% (1.82–5.35 GHz), the insertion loss for the DM signals is less than 5 dB, the suppression of the CM signals is higher than 45 dB, and the DM isolation is better than 10 dB over the fractional bandwidth. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:437–442, 2014.  相似文献   

17.
Half‐hexagonal microstrip antenna (H‐HMSA) is a compact version of HMSA, as it resonates at the same fundamental mode frequency. In this article, a compact configuration of a single layer, broadband gap‐coupled H‐HMSA has been proposed. Gap‐coupled H‐HMSA is fed indirectly by a λ/2 microstrip‐line resonator. Broad bandwidth (BW) is achieved with an effective use of resonance introduced by λ/2 resonator and gap‐coupled half‐hexagonal radiating patches. A peak gain of 7.07 dBi and measured BW (S11 ≤ ?10 dB) of 11.5% at the center frequency of 5.2 GHz have been achieved, which occupies a small volume of 0.023 λ03 including the ground plane. The radiation patterns remain in the broadside direction throughout the return loss BW. Simulated results of the proposed antenna configuration are experimentally validated with good agreement.  相似文献   

18.
A simple via‐hole coupled oversized microstrip line filter is proposed and demonstrated in this article. The via‐hole in this case works as an inductor coupling structure whereas the oversized microstrip line resonator has a higher Q‐factor than its conventional counterpart. Full‐wave‐based circuit models of a series of via‐holes embedded in the oversized microstrip line are extracted by using our proposed numerical calibration technique combined with a commercial method‐of‐moments simulator. A simple 3‐pole via‐hole coupled oversized microstrip line filter is designed and fabricated on the basis of the extracted circuit models of via‐holes. Measured results show that the demonstrated filter has a center frequency of 1.853 GHz, a bandwidth of 6.98% and an insertion loss of 1.36 dB. Measured results of the fabricated filter sample are in agreement with its simulated results, showing a good performance of the proposed scheme. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

19.
A novel nematic liquid crystal (LC) technology‐based electronically controlled leaky wave antenna (LWA) with microstrip‐waveguide conversion working mechanism and wide beam steering range is presented in this article. The LWA is a combination of an inverted microstrip structure and rectangular waveguide. According to the characteristics of LC materials in microwave band, a broadband microstrip‐waveguide conversion device is proposed. The gradient slot leaky wave structure is combined with the microstrip‐waveguide conversion device to form an electronically controlled LWA with continuous tunable beam. Simulation and experiment results show that the LWA proposed in this article has a 32° beam scanning range at 12 GHz and good impedance matching and stable gain, suggesting the great potential of nematic LC materials for extensive applications in microwave band in the future.  相似文献   

20.
This article presents a high‐isolation dual‐frequency rectangular patch antenna utilizing microstrip feed line integrated with a cascade defected microstrip structure (CDMS). Two types of CDMS are added, T‐shaped CDMS and Dumbbell‐T‐shaped CDMS. Simulation results show using these structures improve isolation up to 70 dB and reduce harmonic signals from transmitter. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号