共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(glycidyl methacrylate)/Na–montmorillonite nanocomposites were synthesized by free‐radical polymerization of glycidyl methacrylate containing dispersed montmorillonite. By changing the concentration of glycidyl methacrylate several polymer–clay nanocomposites were prepared and the resulting nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The results indicated that the properties of the composite were significantly improved. The thermogravimetric analysis results revealed that the degradation temperatures of nanocomposites were higher than that of pure polymer and the thermal degradation rates decreased. Examination of these materials by scanning electron microscopy showed that the clay layers are dispersed homogenously in the polymer matrix and the formation of intercalation nanostructure. Furthermore, adsorptive, moisture regain, and water uptake properties of nanocomposites were also investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1532–1538, 2004 相似文献
2.
Mohammad Nahid Siddiqui Halim Hamid Redhwi Despoina Charitopoulou Dimitris S Achilias 《Polymer International》2014,63(4):766-777
In this research, synthesis of novel nanocomposites based on a poly(styrene‐co‐ethyl methacrylate) copolymer matrix was investigated with different types and amounts of organomodified montmorillonite (MMT) clays. The in situ polymerization technique was selected with dispersion of the MMT nanoparticles into the comonomer mixture and subsequent bulk radical polymerization. Reaction kinetics was measured gravimetrically and it was found that the existence of rigid phenyl rings in the organomodifier may result in a hindered reaction rate especially at high clay loadings. Structural characteristics of the nanocomposites formed were verified with XRD and Fourier transform infrared analysis and mainly intercalated/partially exfoliated structures were verified; their glass transition temperature was measured with DSC, and their molecular weight distribution and average molecular weights were measured with gel permeation chromatography. The latter was also used to measure the variation of the copolymer average molecular weight with conversion. Slightly higher average molecular weight and Tg values for the copolymer in the nanocomposites were measured, compared with neat copolymer. The thermal stability of the nanocomposites was measured with TGA and found to be significantly improved. One‐step degradation revealed the existence of macromolecular chains without defective structures. Finally, pyrolysis of the nanocomposite copolymers resulted in the production of both comonomers in high amounts, followed by some dimers or trimers. © 2013 Society of Chemical Industry 相似文献
3.
Poly(methyl methacrylate)/montmorillonite (MMT) nanocomposites were prepared by in situ bulk polymerization. The results showed that the silicone coupling agent affected the structure and properties of hybrid materials. XRD analysis showed that the dispersion of clay in nanocomposites with silicone‐modified organophilic MMT was more ordered than that in nanocomposites with unmodified organophilic MMT. The glass transition temperature (Tg) of the nanocomposites was 6–15°C higher and the thermal decomposition temperature (Td) was 100–120°C higher than those of pure PMMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2256–2260, 2003 相似文献
4.
PMMA/MMT nanocomposites were successfully synthesized via in situ intercalative polymerization, and characterized by means of wide‐angle X‐ray diffractometry, transmission electron microscopy, thermal gravimetric analysis, dynamic mechanical analysis and Fourier‐transform infrared analysis. The nanocomposites possess partially exfoliated and partially intercalated structure, in which the silicate layers are exfoliated into nanometre secondary particles with thickness of less than 20 nm and uniformly dispersed in the polymer matrix. In comparison with pure PMMA, the thermal stability, glass transition temperature, and mechanical properties of the polymer are notably improved by the presence of the nanometric silicate layers. It was found that part of the PMMA chains in the nanocomposites are well immobilized inside and/or onto the layered silicates and, therefore, the unique properties of the nanocomposites result from the strong interactions between the nanometric silicate layers and the polymer chains. Copyright © 2003 Society of Chemical Industry 相似文献
5.
The melt intercalation method was employed to prepare poly(butylene terephthalate) (PBT)/montmorillonite (MMT) nanocomposites, and the microstructures were characterized with X‐ray diffraction and transmission electron microscopy. Then, the nonisothermal crystallization behavior of the nanocomposites was studied with differential scanning calorimetry (DSC). The DSC results showed that the exothermic peaks for the nanocomposites distinctly shifted to lower temperatures at various cooling rates in comparison with that for pure PBT, and with increasing MMT content, the peak crystallization temperature of the PBT/MMT hybrids declined gradually. The nonisothermal crystallization kinetics were analyzed by the Avrami, Jeziorny, Ozawa, and Mo methods on the basis of the DSC data. The results revealed that very small amounts of clay (1 wt %) could accelerate the crystallization process, whereas higher clay loadings reduced the rate of crystallization. In addition, the activation energy for the transport of the macromolecular segments to the growing surface was determined by the Kissinger method. The results clearly indicated that the hybrids with small amounts of clay presented lower activation energy than PBT, whereas those with higher clay loadings showed higher activation energy. The MMT content and the crystallization conditions as well as the nature of the matrix itself affected the crystallization behavior of the hybrids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3257–3265, 2006 相似文献
6.
The thioxanthone‐sensitized photodegradation of poly(alkyl methacrylate) films [alkyl = methyl, ethyl, butyl, and hexyl] was studied using near UV‐vis light. The photooxidation process continued even after the total consumption of the sensitizer, possibly due to the excitation of the ketyl groups formed during the first stages of the process. The rate of oxidation, as well as the formation of hydroxy, peroxy, and ketyl groups was faster for polymers with larger ester groups. The decrease of the molecular weight of the degradated polymers was also larger for the hexyl substituted polymer. The side‐chain size effect was attributed to the larger amount of secondary hydrogens available for abstraction by the triplet state of thioxanthone, present in the larger ester groups. The lower glass transition temperature of the hexyl substituted polymer allows a better diffusion of oxygen to the deeper layers of the films that also contributes to the faster photodegradation rate. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
The polymerization kinetics and thermal properties of dicyanate/clay nanocomposites were investigated. A type of organically modified clay was used as nanometer‐size fillers for the thermosetting dicyanate resin. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/clay nanocomposite systems. The polymerization rate of the nanocomposite systems increased with increasing clay content. An autocatalytic reaction mechanism could adequately describe the polymerization kinetics of the dicyanate/clay nanocomposite systems. The polymerization kinetic parameters were determined by fitting the DSC conversion data to the proposed kinetic equation. The glass‐transition temperature of the dicyanate/clay nanocomposites increased with increasing clay content. The thermal decomposition behavior of the dicyanate/clay nanocomposites was investigated by thermogravimetric analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1955–1960, 2004 相似文献
8.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005 相似文献
9.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanocomposites in the form of films were prepared under the effect of electron beam irradiation. The PVA/MMT nanocomposites gels were characterized by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical measurements. The study showed that the appropriate dose of electron beam irradiation to achieve homogeneous nanocomposites films and highest gel formation was 20 kGy. The introduction of MMT (up to 4 wt %) results in improvement in tensile strength, elongation at break, and thermal stability of the PVA matrix. In addition, the intercalation of PVA with the MMT clay leads to an impressive improved water resistance, indicating that the clay is well dispersed within the polymer matrix. Meanwhile, it was proved that the intercalation has no effect on the metal uptake capability of PVA as determined by a method based on the color measurements. XRD patterns and SEM micrographs suggest the coexistence of exfoliated intercalated MMT layers over the studied MMT contents. The DSC thermograms showed clearly that the intercalation of PVA polymer with these levels of MMT has no influence on the melting transitions; however, the glass transition temperature (Tg) for PVA was completely disappeared, even at low levels of MMT clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1129–1138, 2006 相似文献
10.
Antimony doped tin oxide (ATO) nanoparticles modified poly(ethylene terephthalate) (PET) composites used for manufacturing antistatic PET fiber were synthesized by in situ polymerization. The crystallization and multiple melting behavior of the nanocomposites were systemically investigated by means of Differential Scanning Calorimeter (DSC), Fourier Transform Infrared (FTIR), X‐ray Diffraction (XRD) techniques. The degree of crystallinity in nanocomposites increased with increasing ATO content. Smaller and more incomplete crystals are presented in the crystalline regions of the nanocomposites with increasing the content of ATO, which could be attributed to heterogeneous nucleation effects of ATO nanoparticles. Dynamic Mechanical Analysis (DMA) measurements showed that the storage moduli of the nanocomposites increased with increasing the content of ATO, due to formation of immobilized layer between polymer and filler. The interactions between ATO and PET molecules result in high tan δ for the PET/ATO nanocomposites. Percolation threshold of PET/ATO hybrid fibers prepared by the nanocomposites at room temperature was as low as 1.05 wt %, much lower than that of the composites filled with conventional conductive particles. Adding ATO nanoparticles obviously improves the conductivity of PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
11.
By in situ polycondensation, poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposites was prepared, which were characterized via X‐ray diffraction and transmission electron microscope. The processing stability of these nanocomposites was investigated by the change of number–average molecular weight and carboxyl terminal group content during injection molding, and the thermal stability of the nanocomposites was investigated via thermogravimetric analysis. It was found that some metallic derivatives released from MMT during polycondensation had a great influence on the processing and thermal stabilities of the nanocomposites. The quantity of these metallic derivatives was determined by inductively coupled plasma. The stabilization effect of phosphorous compounds generated from MMT modified with phosphonium was observed. Processing stability and thermal stability of these nanocomposites exhibited similar trend because of almost the same causes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1692–1699, 2006 相似文献
12.
Polymer blends composed of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) were prepared via radical-initiated polymerization of methyl methacrylate (MMA) in the presence of PVAc. Differential scanning calorimetry and dynamic mechanical analysis were employed to investigate the miscibility and phase behavior of the blends. The PMMA/PVAc blends of in situ polymerization were found to be phase separated and exhibited a two-phase structure, although some chain transferring reaction between the components occurred. The phase separation resulted from the solvent effect of MMA during the in situ polymerization, which was confirmed by the investigation of phase behavior based on solution cast blending. Solubility analysis of the polymerized blends indicated that some chain transferring reaction between the components occurred during the polymerization. An abrupt increase in gel content from 21.2 to 72.4 wt % was observed when the inclusion of PVAc increased from 30 to 40 wt %, and the gel component consisted of the component polymers as shown by infrared spectroscopy studies. The thermogravimetric analysis study indicated that the inclusion of a small amount of PVAc gives rise to a marked stabilization effect on the thermal stability. The PMMA/PVAc blends exhibited increased notched impact properties with the inclusion of 5 wt % PVAc. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 675–684, 1998 相似文献
13.
Valerio Causin Massimo L. Carraro Carla Marega Roberta Saini Sandro Campestrini Antonio Marigo 《应用聚合物科学杂志》2008,109(4):2354-2361
Nanocomposites based on poly(vinylidene fluoride) were prepared with montmorillonite by solution blending. The samples were characterized by small angle X‐ray scattering, wide angle X‐ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Different crystallization conditions, that is, evaporation of the solvent and coprecipitation with two different antisolvents, H2O or supercritical CO2 (scCO2), were tested and their influence on the resulting structure and morphology of the samples were studied. Coprecipitation with scCO2 induced an ordinate crystalline framework and an intercalated morphology of clay, with a consequent large improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Poly(trimethylene terephthalate) (PTT)/polypropylene (PP) blend nanocomposites were prepared by melt mixing of PTT, PP, and organically modified clay. The phase morphologies of the PTT/PP nanocomposites and the distribution of the clay in the nanocomposites were investigated using scanning electron microscopy, transmission electron microscopy (TEM), and wide angle X‐ray diffraction. When PP is the dispersed phase, the domain size of the PP phase is decreased significantly with increasing the clay content from 0 to 5 wt %. In contrast, when PTT is the dispersed phase, the dimension of the PTT phase is a little larger in the presence of 2 wt % clay compared with the case of without clay. TEM observations indicate that the clay is mainly distributed at the phase interfaces along the phase borderlines. In addition, some intercalated clay tactoids (multilayer particles) are observed in the PTT matrix whereas no discernable clay particles can be found in the PP phase, indicating that the affinity of clay with PTT is higher than with PP. In the presence of 5 wt % PP‐graft‐maleic anhydride, the phase morphology is much finer, and most clay is exfoliated and distributed at the phase interfaces forming phase borderlines in polygonal shape. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
15.
Jun Shen Wei Jiang Ying Liu Rongqing Wei Xiaoning Liu Yu Zhong Jie Xu Linling Li Gi Xue 《应用聚合物科学杂志》2012,124(5):3905-3911
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
16.
Chia-Hsin Lee An-Ting Chien Ming-Huei Yen King-Fu Lin 《Journal of Polymer Research》2008,15(4):331-336
The exfoliated poly(methyl acrylate-co-methyl methacrylate)/montmorillonite (MMT) nanocomposite latex solutions fabricated
by soap-free emulsion polymerization were able to cast into a film. The films were transparent and ductile unless more than
5 wt% of MMT was incorporated. With the MMT content higher than 5 wt%, the inflammable residuals of nanocomposites after combustion
could preserve their original film profile acting like an inflammable scaffold. Moreover, as 20 wt% MMT was incorporated,
the yield strength of the films was increased up to 20 times and Young’s modulus up to 2,000 times. However, the water vapor
permeability coefficient of the films was only decreased down to its half value. This unexpected behavior of permeability
was associated with the decrease of T
g as the content of MMT was increased, owing to the large difference of the reactivity ratios between methyl acrylate and methyl
methacrylate monomers and their differential absorption to the MMT during copolymerization. 相似文献
17.
Thermal stability of polyvinyl chloride (PVC) based montmorillonite composites with either sodium montmorillonite (MMT) or alkyl ammonium ion modified montmorillonite (OMMT) were investigated by thermogravimetric analysis. The apparent activation energies associated with the first thermal degradation stage were calculated by the methods of Flynn–Wall–Ozawa and Kissinger in nitrogen atmosphere at several different heating rates. The processing thermal stability of PVC and PVC/MMT(OMMT) composites was also discussed. Increase of mixing torque did not result in a larger intercalation extent of PVC on MMT; instead, it unexpectedly induced discoloration of PVC and then deteriorated the processing stability, especially in the presence of OMMT. The apparent activation energies in the first thermal degradation stage exhibited little difference among PVC, PVC/MMT, and PVC/OMMT composites, and the kinetic compensation effect of Sp* kept a constant value, indicating that the thermal stability and thermal degradation mechanism of PVC were not affected by the presence of either MMT or OMMT, although the processing discoloration of PVC is observed for PVC/OMMT composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1521–1526, 2004 相似文献
18.
A novel process for the preparation of poly(propylene)/montmorillonite (PP/MMT) nanocomposites was developed via simultaneous solution grafting‐intercalation in the presence of a reactive ammonium cation that can be grafted onto poly(propylene). Partially introducing this reactive cation into long alkyl ammonium modified MMT interlayers can transfer a conventional microcomposite into intercalated/exfoliated nanocomposites, which was evidenced by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The PP chains were tethered onto the clay surface through the bridge of the reactive ammonium cations, which can be characterized by FTIR. The bridged chemical bonding also results in a good interface adhesion between PP and MMT, as confirmed by SEM investigation. The enhanced thermal properties of PP/MMT nanocomposites were characterized by thermogravimetric analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1018–1023, 2004 相似文献
19.
Jing Cheng Shichao Wang Shuangjun Chen Jun Zhang Xiaolin Wang 《Polymer International》2012,61(3):477-484
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry 相似文献
20.
A rapid and “green” synthesis of poly(p-dioxanone) (PPDO)/montmorillonite (MMT) nanocomposites was carried out smoothly and effectively nder constant microwave powers of 30, 60, 90, and 120 W in a microwave oven at a frequency of 2.45 GHz. The temperature of polymerization was in the range 103–224°C. PPDO, with a viscosity-average molecular weight of 111,000 g/mol and a conversion of 85%, was obtained at 60 W for 10 min, in which the ratio of p-dioxanone to AlEt3 was 300/1 (mol/mol). The intercalated structure of PPDO/MMT nanocomposites was confirmed by X-ray diffraction and transmission electron microscopy. Thermogravimetry data showed that the thermal stability of the nanocomposites prepared under microwave irradiation was improved with respect to those prepared via conventional heating. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献