首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A compact ultra‐wideband (UWB) reconfigurable microstrip fed monopole antenna having size of 0.22 λ0 × 0.28 λ0 × 0.005 λ0 with switchable frequency bands is presented. Triple band notched characteristics are achieved by inserting two stubs at top of radiator and one slot in between the radiator and microstrip feed line. Proposed antenna achieves reconfigurability with three PIN diodes at strategic positions to obtain eight different operational modes. In one of the operational modes, antenna operates in the entire UWB (3‐14 GHz) with fractional bandwidth of 127.5%. Two stubs are used to notch two frequency bands worldwide interoperability for microwave access (3.3‐3.6 GHz/WiMAX) and C‐band (3.7‐4.2 GHz). T‐shaped slot is also inserted to notch wireless local area network (5.725‐5.825 GHz/WLAN) frequency band. Proper biasing of PIN diodes is done by using suitable chip inductors and capacitors. Proposed antenna exhibits stable radiation patterns with average gain of around 3 dBi. Simulation and measurement results are in good agreement. Proposed antenna is suitable for on‐demand band rejection of parasitic bands coexisting in UWB.  相似文献   

2.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications.  相似文献   

3.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

4.
This study presents a new dual‐layer metasurface structure proposed to enhance the performance of a circular patch antenna. A novel unit cell planar metasurface is characterized by nearly equal enhanced effective permeability and permittivity εr ? μr > 1 at the resonant frequency. In addition, a 5*5 array of these unit cells are used as a superstrate over a circular patch antenna which is fed by 50 Ω microstrip line and operating at 2.45 GHz for improving the antenna performance. The patch antenna gain is increased by creating an in‐phase electric field area on the top surface of the metasurface. The obtained results showed that the maximum gain of the antenna increased from 2.31 dBi to 7.5 dBi. A 30% increase in the bandwidth is also remarked. The proposed antenna with metasurface occupies an overall volume of 1.01λg ×1.01λg ×0.025λg . The simulation analysis and measured results were performed using the microwave studio, high frequency structure simulator software, and vector network analyzer. The proposed antenna prototype has been fabricated. The measured results indicate that the antenna has a good impedance matching in the desired operating band (2.37‐2.49 GHz) with the resonant frequency of 2.44 GHz which make the proposed antenna appropriate for microwave applications.  相似文献   

5.
A compact wideband circularly polarized (CP) horn antenna with slot‐coupled feeding structure at Ku band for satellite communication is devised. The proposed design is based on a square aperture horn antenna with two orthogonal ridges, which is fed by nonuniform curved slot along the diagonal of the horn on the bottom cavity. And in order to improve the impedance matching, a staircase typed ridge is connected the feeding probe as a matching network. Moreover, two orthogonal ridges are excited with a tapered slot coupled by the staircase ridges via feeding probe. Wideband CP performance is achieved with an overall physical dimension of 9 mm × 9 mm × 14 mm (0.045λ0 × 0.045λ0 × 0.07λ0 at frequency of 15 GHz). It is experimentally demonstrated that the proposed antenna achieves: a wide 10‐dB return loss bandwidth of about 2.4 GHz, a 3‐dB axial ratio bandwidth of 1 GHz, and a peak gain of 6.5 dBi.  相似文献   

6.
Present article embodies the design and analysis of an octagonal shaped split ring resonator based multiband antenna fed at vertex for wireless applications with frequency‐band reconfigurable characteristics. The proposed antenna is printed on FR4 substrate with electrical dimension of 0.4884 λ × 0.4329 λ × 0.0178 λ (44 × 39 × 1.6 mm3), at lower frequency of 3.33 GHz. The antenna consists of SRR based vertex fed octagonal ring as the radiation element and switchable reclined L‐shaped slotted ground plane. Antenna achieves six bands for wireless standards viz: upper WLAN (5.0/5.8 GHz), lower WiMAX (3.3 GHz), super extended C‐band (6.6 GHz), middle X band (9.9 GHz—for space communication), and lower KU band (15.9 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The proposed design achieves hexa band characteristics during switching ON state of PIN diode located at reclined L‐shaped slot in the ground plane. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna.  相似文献   

7.
This article introduces a new RFID tag antenna designed for operation at 915 MHz. The proposed antenna is electrically small with dimensions (λ0/15) × (λ0/15). It features two vivaldi‐like apertures flipped with respect to each other around an axis parallel to their slotted edges. Each aperture is loaded with a meander line with multiple loops. The two sides of the proposed antenna are fed via a common slot line that is coupled electromagnetically to a perpendicular microstrip line at the other side of a dielectric substrate. The new antenna are fabricated using printed circuit board technology and the fabricated prototype is experimentally characterized. The optimization and theoretical investigation of the proposed antenna are performed via both HFSS and CST. The two simulators agree very well with each other and with measurements. The characteristics of the new RFID antenna are generally good, such as: small size (22 mm2), low profile (0.8 mm), flexible impedance matching, reasonable impedance bandwidth (8%), omni‐directional radiation, low cross‐polarization level (?20 dB at broadside), acceptable radiation efficiency (76%), and gain (?0.3 dBi). © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 23: 639–645, 2013.  相似文献   

8.
In this article, a hybrid microstrip fed dual‐cylindrical dielectric resonator antenna (dual‐CDRA) has been proposed for the sub‐6 GHz band application with a wide circular polarization band. The proposed hybrid microstrip feed cylindrical dielectric resonator antenna utilizes an S‐shaped microstrip feed line to excite fundamental HE11δ like mode and hybrid mode in dual‐CDRAs. The presented antenna structures are acting as monopole antenna separately with 48.75% (3.88‐6.38 GHz) bandwidth whereas both radiators called dual‐CDRAs enhances the bandwidth up to 93.06% (2.16‐5.92 GHz) in addition with an axial ratio bandwidth of 15.2% (3.52‐4.1 GHz). The proposed antenna is applicable for WiMAX (3.4‐3.69 GHz), and WLAN application of 802.11d and 8.02.11e IEEE standard. For validation of simulated results, an antenna prototype has been fabricated and experimentally verified. A good agreement between simulation and measured results are obtained. The simulation results have been carried out by using Ansys HFSS 14.0 version software.  相似文献   

9.
A beam scanning Fabry‐Pérot cavity antenna (FPCA) for 28 GHz‐band is presented in this article. The proposed antenna consists of a slot‐fed patch antenna and several layers of perforated superstrates with different dielectric constant. The beam of the antenna can be controlled by moving the superstrate over the antenna. By increasing the offset between the feeding antenna and the superstrate, a larger tilt angle can be obtained. The size of the antenna is 0.95λ0 × 0.95λ0 × 0.48λ0 at 28.5 GHz. The results show the proposed antenna achieves an impedance bandwidth (S11 < ‐10 dB) of 10.5% (27.2‐30.2 GHz), and the beam can be scanned from 0° to 14° in the yoz‐plane with the offset changed from 0 mm to 2 mm. The gain of the antenna is enhanced by 5 dBi in comparison with the feeding antenna without the superstrate, which ranges from 10.91 to 11.53 dBi with the different offset. The proposed antenna is fabricated and shows a good agreement with simulated result.  相似文献   

10.
A novel zeroth‐order resonator (ZOR) meta‐material (MTM) antenna with dual‐band is suggested using compound right/left handed transmission line as MTM. In this article, suggested antenna consists of patch through series gap, two meander line inductors, and two circular stubs. The MTM antenna is compact in size which shows dual‐band properties with first band centered at 2.47 GHz (2.05‐2.89 GHz) and second band is centered at 5.9 GHz (3.70‐8.10 GHz) with impedance bandwidth of (S11 < ? 10 dB) 34.69% and 72.45%, respectively. At ZOR mode (2.35 GHz), the suggested antenna has overall dimension of 0.197λo × 0.07λo × 0.011λo with gain of 1.65 dB for ZOR band and 3.35 dB for first positive order resonator band which covers the applications like Bluetooth (2.4 GHZ), TV/Radio/Data (3.700‐6.425 GHz), WLAN (5‐5.16 GHz), C band frequencies (5.15‐5.35, 5.47‐5.725, or 5.725‐5.875 GHz) and satellite communication (7.25‐7.9 GHz). The radiation patterns of suggested structure are steady during the operating band for which sample antenna has been fabricated and confirmed experimentally. It exhibits novel omnidirectional radiation characteristics in phi = 0° plane with lower cross‐polarization values.  相似文献   

11.
A compact horizontally polarized omnidirectional slot antenna with a wide working band is presented in this article. The proposed antenna consists of 4 shorter driven cross‐shaped slots, 4 longer parasitic cross‐shaped slots, and a feeding network. Four shorter slots, placed on the same side of a circular substrate, are fed by a feeding network printed on the other side with uniform phase and magnitude. To enhance the bandwidth of the antenna, 4 longer cross‐shaped slots are inserted between adjacent longer slots to produce an additional resonant frequency. All 8 slot radiators placed symmetrically along the circumference results in an omnidirectional horizontal polarized radiation pattern. By utilizing cross‐shaped slots, a compact size of 0.53λL × 0.53λL × 0.005λLL is the free space wavelength at the lowest operational frequency) is achieved. The prototype of the proposed antenna is fabricated and measured. The measured results reasonably agree with the simulated results. The measured working band for |S11|<–10dB is from 1.62 to 2.81 GHz which successfully covers the 1.7 to 2.7 GHz 2G/3G/LTE bands. The measured gain variation in azimuthal angle is <1.7 dB within 1.7 to 2.7 GHz, and the cross polarization level is <–27 dB in the horizontal plane.  相似文献   

12.
A high-aperture efficiency and broadband metasurface antenna array with multi-mode radiator is put forward in this article. The abnormal slot is etched at the center of the ground plane and fed to the antenna via a microstrip line. Resonant along the slot line, and in the electric field, two short horizontal lines with uniform gaps are symmetrically added near zero. Additional radiation modes have been introduced. Then, broadband slot antenna with two resonances is obtained by combining full-wavelengths provided by the first slot. Working bandwidth increased from 7.6% to 21.1%. By introducing a ring slot, the antenna gain is increased by 0.9 dBi. At the same time, the aperture efficiency is modified by 12.9%. A 2 × 2 array was made to verify the design, with an overall size of 2.01λ0× 2.01λ0 × 0.07λ0. The simulation and measurement results show that the operating bandwidth is 38.9% with maximum gain is 15.8 dBi.  相似文献   

13.
A compact tri‐band multiple‐input‐multiple‐output (MIMO) antenna based on a quarter‐mode slotted substrate‐integrated‐waveguide (SIW) cavity is proposed. By etching a wide slot, a single SIW cavity is divided into two sub‐cavities with the same size. They are fed by coaxial ports to form two MIMO elements and high antenna isolation can be achieved by this slot. To obtain multi‐band operations, two narrow slots are cut in the upper sub‐cavity and the other two slots are etched in the lower sub‐cavity. Three eighth‐mode resonances with different areas can simultaneously occur in these antenna elements. A prototype with the overall size of 0.34λ0 × 0.34λ0 has been fabricated. The measured center frequencies of three operating bands are 2.31, 2.91, and 3.35 GHz, respectively. The measured gain at above frequencies is 4.52, 4.29, and 4.57 dBi, respectively. Moreover, the measured isolation is higher than 16.7 dB within the frequency of interest.  相似文献   

14.
This work explains the design and analysis of a triple‐band electrically small (ka = 0.56 < 1) zeroth‐order resonating (ZOR) antenna with wideband circular polarization (CP) characteristics. The antenna compactness is obtained due to ZOR frequency of composite right/left‐handed (CRLH) transmission line (TL) and wideband CP radiation are achieved due to the introduction of single‐split ring resonator and asymmetric coplanar waveguide fed ground plane. The proposed antenna obtains an overall electrical size including the ground plane of 0.124 λ0 × 0.131 λ0 × 0.005 λ0 at 1.58 GHz and physical dimension of 23.7 × 25 × 1 mm3 are achieved. The antenna provides a size reduction of 44.95% compared to a conventional monopole antenna. The novelty behind the ohm‐shaped capacitor is the generation of extra miniaturization with better antenna compactness. The antenna provides dual‐polarized radiation pattern with linear polarization radiation at 1.58 and 3.54 GHz, wideband CP radiation at 5.8 GHz. The antenna measured results shows good impedance bandwidth of 5%, 6.21%, and 57.5% for the three bands centered at 1.58, 3.54, and 5.8 GHz with a wider axial ratio bandwidth (ARBW) of 25.47% is obtained in the third band. The antenna provides a higher level of compactness, wider ARBW, good radiation efficiency, and wider S11 bandwidth. Hence, the proposed antenna is suitable for use in GPS L1 band (1.565‐1.585 GHz), WiMAX 3.5 GHz (3.4‐3.8 GHz) GHz, WLAN 5.2/5.8 GHz (5.15‐5.825 GHz), and C‐band (4‐8 GHz) wireless application systems.  相似文献   

15.
A dual‐mode circularly polarized compact antenna with integrated left‐hand and right‐hand circular polarization (LHCP and RHCP) is presented in this work. A multilayer arrangement of a square patch and square ring structure with an irregular transmission line is analyzed for dual‐band, dual‐CP operation. To realize dual mode propagation the proposed structure is excited using electromagnetic coupling technique. Succeeding proximity feeding with T‐stub match is analyzed, which conveys impedance bandwidth of 180 and 300 MHz within |S11| < ?10 dB at 3.5 and 5.5 GHz. The designed CP elements is suitably arranged with feed line for generating two orthogonal polarization of equal amplitude and a 90° phase difference at both the resonant modes (TM10 and TM01). Alterable LHCP and RHCP performance is realized by altering the compensated position and peculiar angle. Having both LHCP and RHCP polarization this design shows polarization insensitive characteristic. Each LHCP and RHCP antenna element accomplished a 3‐dB AR of 70 and 120 MHz with a gain up to 6 dBi. With a low profile of 0.27λ0 × 0.27λ0 × 0.04λ0, the CP antenna is fabricated, and the performance is validated through experimental analysis. With all the viable characteristics, the antenna is proposed for Wi‐MAX/WLAN communication.  相似文献   

16.
A multilayered circularly polarized (CP), dual‐band, stacked slit‐/slotted‐patch antenna with compact size and with compact rectifier is offered for RF energy harvesting systems. The compact dual‐band CP antenna size is able to achieve by stacking slotted‐circular‐patch (SCP) on the substrate above the tapered‐slit‐octagon patch (TSOP). Dual‐band CP radiation is realized by stacking the SCP on the TSOP and the microstrip feedline with metallic‐via to SCP. Eight‐tapered‐slit with length difference of 6.25% are embedded along the octagonal directions symmetrically on the TSOP from the patch's center and two unequal size circular slots are embedded in diagonal axis onto SCP to produce dual‐orthogonal modes with almost equal magnitude for CP waves. The designed antenna is realized measured gain of greater than 5.2 dBic across the band (0.908‐0.922 GHz) with maximum gain of 5.41 dBic at 0.918 GHz and gain of greater than 6.14 dBic across the band (2.35‐2.50 GHz) with maximum gain of 7.94 dBic at 2.485 GHz. An overall antenna volume is 0.36λ o × 0.36λ o × 0.026λ o (λ o is free space wavelength at 0.9 GHz). A compact composite right‐/left‐handed (CRLH) based rectifier with dual‐band at 0.9 and 2.45 GHz is designed, prototyped, and measured. The right‐handed (RH) part of the CRLH transmission line (TL) is formed by a microstrip line. The left‐handed (LH) part of the CRLH‐TL is formed by lumped components. The measured RF‐DC conversion efficiency is 43% at 0.9 GHz and 39% at 2.45 GHz with rectifier size of 0.18λ o × 0.075λ o × 0.0002λ o at 0.9 GHz.  相似文献   

17.
This letter presents the experimental results of a novel planar antenna design which is synthesized using simplified composite left/right‐handed transmission‐line (SCRLH‐TL), which is a version of a conventional composite left/right handed‐transmission‐lines (CRLH‐TL), however, with the omission of shunt‐inductance in the unit‐cell. SCRLH‐TL exhibits a right‐handed response with nonlinear dispersion properties and a smooth Bloch‐impedance distribution. Arranged within the inner slot of the antenna are three smaller rectangular patch radiators. Each patch radiator is embedded with an E‐shaped notch, and located in the antenna conductor is a larger E‐shaped notch next to the 50‐Ω termination. The E‐shaped notches constitute SCRLH‐TL property. The gap in the slot between the smaller patches and the conductor next to the larger E‐shaped notch determines the impedance bandwidth of the antenna. The dimensions of the smaller patches determine the radiation characteristics of the antenna. The antenna is excited using a conductor‐backed coplanar waveguide transmission‐line. The antenna covers a bandwidth of 7.3 GHz between 0.7 GHz and 8GHz, which corresponds to 167.81%. In this band, the antenna resonates at 4.75 GHz and 7 GHz; the gain and radiation efficiency at these frequencies are 4 dBi—80% and 3.6 dBi—73%, respectively. The antenna's performance was validated through measurement. The antenna has dimensions of 0.0504λ0 × 0.0462λ0 × 0.0018λ0, where λ0 is free‐space wavelength at 700 MHz. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:217–225, 2016.  相似文献   

18.
In this letter, we present a circular polarization antenna array using the novel slot‐coupling feeding technique. This antenna includes eight elements which are installed in line, each array element is fed by means of two microstrip lines with equal amplitude and phase rotation of 90°. The feeding microstrip lines are coupled to a square patch through a square‐ring slot realized in the feeding network ground plane. With the presence of the slots, this antenna array is able to cover the range of frequency of 3 GHz to 4 GHz. The size of the proposed antenna array is 7λ × 1.8λ × 0.4λ. The measured gain is 15.2 dBi and the bandwidth of S11< ?10 dB is 1 GHz (3–4 GHz, 28%). The antenna array is suited for the WiMAX applications. With the use of slot‐coupling feeding technique, the measured bandwidth for axial ratio < 3 dB is about 24% in the WiMAX frequency band (3.3–3.8GHz). The measured HPBW of the yz planes is larger than 62°. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:567–574, 2016.  相似文献   

19.
A miniaturized dual‐band CPW‐fed Metamaterial antenna with modified split ring resonator (SRR) loading has been presented in this paper. Proposed antenna comprises a tapered rectangular patch with a slot in which an elliptically SRR has been loaded to achieve miniaturization. Proposed antenna shows dual band operations in the operating band 3.25‐3.42 and 3.83‐6.63 GHz, respectively. It has been observed that lower mode (at 3.36 GHz) is originated by means of modified SRR. SRR is being modified by small meandered line inductor which is placed instead of strip. This provides an extra inductance to SRR resulting miniaturization. Overall electrical size of the proposed antenna is 0.222 × 0.277 × 0.017 λ0 at 3.36 GHz. Second band is due to coupling between feed and ground planes. The antenna offers an average peak gain of 1.72 and 3.41 dB throughout the first and second band respectively. In addition to that this antenna exhibits perfect omnidirectional and dipolar radiation patterns at xz‐ and yz‐ plane respectively. Due to consistent radiation pattern, ease of fabrication, and compact nature this antenna can be used for wireless applications such as worldwide interoperability for microwave access (WiMAX), industrial, scientific and medical (ISM) band, WLAN/Wi‐Fi bands.  相似文献   

20.
A broadband and compact coplanar waveguide (CPW) coupled‐fed metasurface (MS)‐based antenna for C‐band synthetic aperture radar (SAR) imaging application is proposed in this article, which is consisted of 16 uniform periodic square patches performed as radiators. The CPW feeding structure gives two following functions: (1) It excites an aperture coupling slot structure underneath the center of MS patch array. (2) It acts as a ground plane for the metasurface patch units. Different slots were investigated and eventually an hourglass‐shaped slot is applied to enhance bandwidth for imaging applications. A prototype with a dimension of 60 × 60 × 1.524 mm3 (1.1λ0 × 1.1λ0 × 0.03λ0) operating at the center frequency 5.5 GHz (f0) has been fabricated and measured to verify the design principle. This antenna has a measured impedance bandwidth of 12.4% from 5.14 to 5.82 GHz, a peak gain of 9.2 dBi and averaged gain of 7.2 dBi at broadside radiation. Microwave imaging experiments using the proposed antenna have been carried out and a good performance is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号