首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Polymer Composites》2017,38(6):1112-1117
Polymeric nanoparticles have many advantages as the reinforcing filler of rubber. To investigate the mechanism of the reinforcement, nanocomposites of poly(styrene‐butadiene) rubber (SBR) filled with polystyrene (PS) particles as the reinforcing agents was prepared. Morphology and dynamical mechanical properties of PS particles‐filled SBR were investigated. It was found that the polymer chains of the elastomer could be absorbed onto the PS particles, in reminiscent to the concept of bound rubber in inorganic filler‐filled elastomeric system. The adsorbed polymer layer can form up glassy bridges between neighboring filler particles, leading to the agglomeration of the filler particles and the reinforcement of the elastomer. With higher filler content or smaller filler size, the numbers of the glassy bridges increase, and the modulus of the elastomer increases. With higher strain or higher temperature, the filler–filler interaction is disrupted and the material is softened. The study discovered the existence of bound rubber in PS particles‐filled elastomer and illustrated its influence on the dynamic mechanical properties, which could be helpful to design the polymeric nanoparticles for rubber reinforcement. POLYM. COMPOS., 38:1112–1117, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
Graphene has become an attractive reinforcing filler for rubber materials, but its dispersion in rubber is still a big challenge. In this work, a novel carbon black‐reduced graphene (CB‐RG) hybrid filler was fabricated and blended with styrene‐butadiene rubber (SBR) via simple two‐roll mill mixing. The prepared CB‐RG hybrids had a microstructure with small CB agglomerates adsorbed onto graphene surfaces. CB acted as a barrier preventing the RG sheets from restacking even after drying. Homogeneous dispersion of graphene sheets in SBR matrix was observed by the mechanical mixing method based on the application of the CB‐RG hybrid fillers. Dynamic mechanical analysis showed that Tg of the SBR/CB‐RG blend was higher than that of the SBR/CB blend indicating strong interfacial interactions between RG and SBR due to the high surface area of graphene and the π‐π interaction between SBR and graphene. The tensile properties of SBR/CB‐RG composites improved significantly and the volume resistivity decreased compared with the SBR/CB blends. The thermal stability of SBR composites filled with CB and CB‐RG showed slight difference. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41309.  相似文献   

3.
The continuous ultrasonic devulcanization of natural rubber (NR) filled with various concentrations of carbon black (CB) indicated a minimum of crosslink density and gel fraction at an intermediate amplitude, which is independent of CB content. An attempt was made to improve the efficiency of devulcanization by use of various chemicals (1,3 Diphenylguanidine, 2‐Mercaptobenzothiazole, Thianaphthene). However, these experiments did not indicate any improvement in comparison with devulcanization without chemicals. An idea of adding fresh CB into devulcanized compound, which has been shown to improve mechanical properties in the case of styrene–butadiene rubber (SBR), was tested in the present study for CB filled NR compound. The obtained result indicated that an addition of fresh CB to devulcanized CB‐filled NR did not lead to an improvement in mechanical properties upon revulcanization. The revulcanization recipe was optimized to improve the mechanical properties of revulcanized CB‐filled NR vulcanizates. It was found that CB‐filled NR upon revulcanization retained its strain‐induced cystallizability with the tensile strength and elongation at break at about 50 and 70% level of the virgin vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2340–2348, 2001  相似文献   

4.
High‐abrasion furnace black (HAF, grade N330)–filled powdered styrene butadiene rubber [P(SBR/HAF)] was prepared and the particle size distribution, mixing behavior in a laboratory mixer, and mechanical properties of P(SBR/HAF) were studied. A carbon black–rubber latex coagulation method was developed for preparing carbon black–filled free‐flowing, noncontact staining SBR powders, with particle diameter less than 0.9 mm, under the following conditions: carbon black content > 40 phr, emulsifier/carbon black ratio > 0.02, and coating resin content > 2.5 phr. Over the experimental range, the mixing torque τα of P(SBR/HAF) was not as sensitive to carbon black content and mixing temperature as that of HAF‐filled bale SBR (SBR/HAF), whereas the temperature build‐up ΔT showed little dependency on carbon black content. Compared with SBR/HAF, P(SBR/HAF) showed a 20–30% mixing energy reduction with high carbon black content (>30 phr), which confers to powdered SBR good prospects for internal mixing. Carbon black and the rubber matrix formed a macroscopic homogenization in P(SBR/HAF), and the incorporation step is not obvious in the internal mixing processing results in these special mixing behaviors of P(SBR/HAF). A novel mixing model of carbon black–filled powdered rubber, during the mixing process in an internal mixer, was proposed based on the special mixing behaviors. P(SBR/HAF) vulcanizate showed better mechanical properties than those of SBR/HAF, dependent primarily on the absence of free carbon black and a fine dispersion of filler on the rubber matrix attributed to the proper preparation conditions of noncontact staining carbon black–filled powdered SBR. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2494–2508, 2004  相似文献   

5.
This work is devoted to the rupture behavior of elastomers filled with carbon black (CB) or silica. Two elastomers have been studied: one which crystallizes under strain, natural rubber (NR), and another one which does not crystallize, styrene butadiene rubber (SBR). The study of the crack propagation of Single Edge Notched specimen (SENT) during stretching at different speeds focuses on the crack initiation and crack deviation phenomenon. This deviation is of main importance in the materials crack resistance as it leads to a large increase in the energy needed for rupture. The deviation in filled or unfilled NR is controlled by crystallization, which is a slow process. In unfilled SBR, deviation is controlled by polymer chain orientation, which is hindered by relaxation mechanisms. The introduction of fillers promotes strain amplification, and strain anisotropy in the crack tip region of the notched samples, and therefore crack deviation. In term of energy density at break of the SBR composites, the SBR filled with silica treated with a covering agent is the most efficient. Thus, a weak interface between the silica and SBR promotes better rupture properties. When comparing Silica and CB filled NR, the highest strain energy to rupture is also obtained with silica. This might be due to the weaker filler‐matrix interface for silica. Thus, these results evidence the kinetic aspect of the rupture, and of the mechanisms it involves: the polymer relaxation, the crystallization (for NR), and the filler‐matrix interaction and decohesion, all of them being strongly interrelated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The dynamic properties, including the dynamic mechanical properties, flex fatigue properties, dynamic compression properties, and rolling loss properties, of star‐shaped solution‐polymerized styrene–butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped styrene–butadiene rubber cocoagulated rubber (N‐SSBR), both filled with silica/carbon black (CB), were studied. N‐SSBR was characterized by 1H‐NMR, gel permeation chromatography, energy dispersive spectrometry, and transmission electron microscopy. The results show that the silica particles were homogeneously dispersed in the N‐SSBR matrix. In addition, the N‐SSBR/SiO2/CB–rubber compounds' high bound rubber contents implied good filler–polymer interactions. Compared with SSBR filled with silica/CB, the N‐SSBR filled with these fillers exhibited better flex fatigue resistance and a lower Payne effect, internal friction loss, compression permanent set, compression heat buildup, and power loss. The nanocomposites with excellent flex fatigue resistance showed several characteristics of branched, thick, rough, homogeneously distributed cross‐sectional cracks, tortuous flex crack paths, few stress concentration points, and obscure interfaces with the matrix. Accordingly, N‐SSBR would be an ideal matrix for applications in the tread of green tires. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40348.  相似文献   

7.
Effect of Grafted Carbon Black on Properties of Vulcanized Natural Rubber   总被引:1,自引:0,他引:1  
Summary To modify carbon black (CB) surface, in situ grafting of natural rubber (NR) onto the CB surface by solid-state method was used to get grafted carbon black (GCB). The vulcanization characters of NR compounds employed CB and GCB were investigated. Crosslinking density of vulcanized NR was measured by equilibrium swelling method. As a result, it was found that GCB could improve both cure rate and crosslinking density. Moreover, the mechanical properties of vulcanized NR filled with GCB were enhanced to a large extent compared with vulcanized NR filled with CB. No Payne Effect was observed in GCB filled NR compounds during dynamic properties testing, indicating that there was no filler network and GCB was dispersed uniformly in NR matrix, which was proved by SEM micrographs. Based on above results, it was considered that the grafting modification weakened filler-filler interaction and enhanced filler-polymer interaction.  相似文献   

8.
9.
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002  相似文献   

10.
Carbon black (CB) and precipitated silica are two major reinforcing fillers in rubbers. CB/silica hybrid filler is also widely used in rubbers to provide balanced properties. CB/silica‐hybrid‐filler‐filled styrene‐butadiene rubber (SBR) containing naphthenic oil (NO), soybean oil (SO) and norbornylized SO (NSO) was investigated. The swelling and curing behavior and rheological, mechanical, thermal, aging and dynamic properties were studied and compared with earlier reported data on CB‐ or silica‐filled SBR. NSO provides better scorch safety and faster cure than SO. Compared with NO, the addition of SO and NSO enhances the thermal stability and aging resistance of SBR vulcanizates. SBR/NSO vulcanizates with hybrid filler exhibit a higher tensile and tear strength than SBR/NO and SBR/SO vulcanizates. A synergistic effect in the abrasion resistance of vulcanizates containing the hybrid filler is observed. An increase of sulfur content in the hybrid‐filler‐filled SBR/NSO vulcanizates provides further improvement in abrasion resistance, wet traction and rolling resistance. © 2017 Society of Chemical Industry  相似文献   

11.
Abstract

Hollow carbon black (HCB) is introduced in this work. It has a special hollow structure, high specific surface area, high structure and high electric conductivity. Hollow carbon black is used to fill styrene–butadiene rubber (SBR). The bound rubber test results show that the bound rubber of SBR/HCB can be measured when the HCB content reaches 25 phr because a strong filler network is formed, which indicates good electric conductivity of SBR/HCB. In comparison, the bound rubber of SBR/N330 can not be measured even when the N330 content is 40 phr. The mechanical measurements show that HCB has very good reinforcing effect on SBR especially when the filler content is low. The electric conductivity and thermal conductivity increase with the increase in filler content. At the same filler content, the properties of SBR/HCB nanocomposites are better than those of SBR/N330 nanocomposites, which suggests that HCB has good application potential.  相似文献   

12.
Styrene–butadiene rubber (SBR) composites filled with hemp hurd powder (HP) were prepared with bis(3‐triethoxysilylpropyl) tetrasulfide (Si69) as a coupling agent. The effects of the filler content and coupling agent on the curing characteristics and dynamic mechanical properties of the composites were studied. The results indicate that with increasing filler loading, the torque values increased and the curing time decreased. The mechanical properties improved with increasing filled HP content up to 60 phr. Usually, long fibers led to a sharp decrease in the toughness of the composites, whereas short fibers, such as HP, had a positive effect on the elongation at break within the loading range studied. The extent of the filler–matrix interaction and the scanning electron micrographs of the fractured surfaces confirmed that the addition of Si69 improved the interfacial interaction between HP and the SBR matrix, which led to an increase in the maximum torque and the mechanical properties. Moreover, the coupling agent was helpful in dispersing the filler in the rubber matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

14.
The rheological behavior and crosslinking kinetics of model filled rubber compounds during curing were investigated. The effect of chemical composition of monodisperse size particles, prepared by emulsifier‐free emulsion polymerization, on dynamic moduli and gelation time of the filled compounds was studied. All filled systems showed much shorter gelation times than the pure matrix in the order PSVP < PS < PMMA ? Pure Matrix. The dynamic moduli during curing increased with increasing interactions between particles and matrix. Physical crosslinking, due to either particle clustering or a network of filler particles with an adsorbed polymer layer, made a significant contribution to the overall crosslink density and the gelation of rubber compounds. As a result, the dynamic mechanical properties and curing kinetics of the rubber compounds varied with the chemical nature of the filler particles.  相似文献   

15.
A novel carbon black (CB) and nanoclay (NC) dual phase‐filled system in SBR matrix has been developed to be employed as a tyre tread compound with optimized performance properties. The nanocomposite has shown improved dynamic properties i.e. rolling resistance (tan δ at 60°C) and wet skid resistance (tan δ at 0°C), for relatively lower loading of NC (3 phr). However, the mechanical properties and wear resistance combined with above mentioned dynamic properties have been further improved by direct substitution of stearic acid with calcium stearate. This has been argued to be due to enhanced filler‐rubber interaction by the strong ionic interactions between the calcium ion (Ca++) and layered silicates (NC) having anionic surface. Transmission electron microscopy and low angle X‐ray diffraction studies have revealed the role of calcium stearate as a dispersion promoter for organoclay. Fourier transform infra‐red spectroscopy study has shown a shift in the Si O Si bond towards lower wave number indicating better polymer‐clay interaction. A detailed investigation on the dynamic rheological behavior of SBR‐CB‐NC nanocomposites has been carried out using rubber process analyzer to invoke an insight into the processing behavior of these composites. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
An investigation on the effect of filler geometry/shape on the dynamic mechanical properties of polymers was conducted. The viscoelastic damping matrix chosen was SBR and the fillers chosen were graphite, aramid, and carbon short fibers. The study was conducted by taking a control base compound of 20 parts N330 carbon black‐filled styrene butadiene rubber (SBR). Dynamic mechanical thermal analyzer was used to investigate the viscoelastic damping of the rubber composites at low dynamic strain levels. Compressive hysterisis at moderate degree of strain were evaluated for all the composite samples to probe into their high strain static damping properties. SEM was used to investigate the matrix‐fiber interaction and distribution of the fillers. Investigations demonstrated that the matrix‐filler interface plays a major role in energy dissipation. The amount of interface was analyzed by considering the half height width of tan δ peak. Fiber matrix interaction parameter was calculated from the tan δmax values for matrix and composite. It was observed the interaction parameter and the low strain tensile stress values register similar trend. Aramid short fibers were most effective in more energy dissipation than other fillers under consideration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Carbon black (HAF) filled powdered natural rubber (P(NR/HAF)) was prepared and the particle size distribution, mechanical properties, and micromorphology of P(NR/HAF) were studied. A carbon black–rubber latex coagulation method was developed for preparing carbon black filled free‐flowing, noncontact staining NR powders with particle diameter less than 0.9 mm. A powdering mechanism model was put forward to describe the powdering process, which shows that the key technical points consist in the surfactant with good emulsification properties and the polymer coating resin with good film forming properties. SEM analysis shows that carbon black and rubber matrix have formed a macroscopic homogenization in the P(NR/HAF) particles without contact staining, and carbon black particles are well dispersed in rubber matrix with diameter of about 50–150 nm. P(NR/HAF) vulcanizate showed better mechanical properties than bale natural rubber/carbon black blends (NR/HAF) and simple NR latex/carbon black blends (NRL/HAF), which depends primarily upon the absence of free carbon black, the fine dispersion of filler on the rubber matrix, and the better interaction between carbon black and rubber matrix due to the proper preparation condition of noncontact staining carbon black filled powdered NR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1763–1774, 2006  相似文献   

18.
Khalifeh  Sara  Tavakoli  Mitra 《Iranian Polymer Journal》2019,28(12):1023-1033

Microstructural development of elastomeric nanocomposites based on (50/50 wt%) styrene butadiene rubber (SBR) and epoxidized natural rubber (50 mol% epoxidation, ENR50) as the rubber matrix including two types of carbon fillers, carbon black (CB) and functionalized multiwall carbon nanotube (NH2-MWCNT), which were prepared through melt mixing, was studied. The results from FTIR analysis show that there is interaction between functional groups on MWCNT surface and the rubber chains. The AFM analysis also indicates good dispersion of filler particles in the rubber phases. FESEM images from cryo-fractured surface of samples have revealed that nanotubes were rarely pulled out of matrix and their diameter increased, resulting from good interaction between MWCNTs and rubber chains. The DMA results confirm good interfacial interaction between them. Furthermore, the reduced difference between the two Tgs of phases (ΔTg) shows that the incorporation of 3 phr MWCNT into the blend leads to increment in rubber phase compatibility but at higher MWCNT content (5 phr) due to lower Mooney viscosity of SBR phase, MWCNTs tend to remain in this phase. The bound rubber was adopted to characterize the polymer–filler interaction, showing that bound rubber content has an increasing trend with increasing in fillers content. The cure rheometric studies reveal that MWCNTs accelerate the cure process due to the presence of amine groups on the nanotube surface. In addition, the mechanical properties of samples show an increasing trend by increasing nano-filler content.

  相似文献   

19.
The effects of different types of fillers and filler loadings on the properties of carboxylated nitrile rubber (XNBR) latex were identified. Silica, mica, carbon black (CB; N330), and calcium carbonate (CaCO3) were used as fillers with filler loadings of 10, 15, and 20 parts per hundred rubber. Furnace ashing and Fourier transform infrared analysis proved that interaction existed between the fillers and XNBR latex films. The morphology of the filled XNBR films was significantly different for different types of fillers. Mica and CaCO3 fillers showed uneven distribution within the XNBR film, whereas other fillers, such as silica and CB, showed homogeneous distribution within the films. In the observation, silica and mica fillers also illustrated some degree of agglomeration. The mechanical properties (e.g., tensile and tear strengths) showed different trends with different types of fillers used. For silica and mica fillers, the mechanical properties increased with filler loadings up to a certain loading, and decreased with higher filler loadings. For CB filler, the mechanical properties increased gradually with increasing filler loadings. CaCO3 fillers did not increase the mechanical properties. The crosslinking density of the XNBR films increased when they were incorporated with fillers because of the presence of elastomer–filler and filler–filler interactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Polymer/filler interactions have been found to affect the performance of tire tread, sidewall, innerliner, or carcass and other industrial rubber products that are all based on filled elastomers. Identification of types of various polymer/filler interactions and ranking of their impacts have been elusive. Isobutylene-based polymers have relatively saturated structures and contain very low concentrations of functional group. Examples are BIMS (a brominated isobutylene/p-methylstyrene copolymer) containing p-bromomethylstyrene and p-methylstyrene; bromobutyl rubber containing  Br and olefin; chlorobutyl rubber containing  Cl and olefin; and butyl rubber containing olefin. On the other hand, high diene rubbers, such as polybutadiene rubber, polyisoprene rubber, and styrene/butadiene rubber, have unsaturated backbones and high olefin contents. Hence, different types and extents of interaction with reinforcing fillers, such as carbon black (CB) or silica, are expected in these two classes of elastomer. This work employs bound rubber (solvent extraction), viscoelasticity, stress–strain measurements, and solid state NMR to identify, differentiate, and scale polymer/filler interactions in unvulcanized BIMS/CB, BIMS/silica, SBR/CB, and SBR/silica composites, where SBR denotes a styrene/butadiene rubber. Four different types of CB and one type of silica have been studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4943–4956, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号