首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling its processing in real time. The right reduced‐order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced‐order basis is selected to minimize the two‐norm of the residual arising at each Newton iteration. Thus, this basis is iteration‐dependent, enables capturing of non‐linearities, and leads to the globally convergent Gauss–Newton method. To avoid the significant computational cost of assembling the reduced‐order operators, the residual and action of the Jacobian on the right reduced‐order basis are each approximated by the product of an invariant, large‐scale matrix, and an iteration‐dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration‐dependent matrix is computed to enable the least‐squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non‐linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high‐dimensional non‐linear models while retaining their accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An approach is proposed for the rapid prediction of nano‐particle transport and deposition in the human airway, which requires the solution of both the Navier–Stokes and advection–diffusion equations and for which computational efficiency is a challenge. The proposed method builds low‐order models that are representative of the fully coupled equations by means of the Galerkin projection and proper orthogonal decomposition technique. The obtained reduced‐order models (ROMs) are a set of ordinary differential equations for the temporal coefficients of the basis functions. The numerical results indicate that the ROMs are highly efficient for the computation (the speedup factor is approximately 3 × 103) and have reasonable accuracy compared with the full model (relative error of ≈7 × 10?3). Using ROMs, the deposition of particles is studied for 1≤dn≤100 nm, where dn is the diameter of a nano‐particle. The effectiveness of this approach is promising for applications of health risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A rigorous computational framework for the dimensional reduction of discrete, high‐fidelity, nonlinear, finite element structural dynamics models is presented. It is based on the pre‐computation of solution snapshots, their compression into a reduced‐order basis, and the Galerkin projection of the given discrete high‐dimensional model onto this basis. To this effect, this framework distinguishes between vector‐valued displacements and manifold‐valued finite rotations. To minimize computational complexity, it also differentiates between the cases of constant and configuration‐dependent mass matrices. Like most projection‐based nonlinear model reduction methods, however, its computational efficiency hinges not only on the ability of the constructed reduced‐order basis to capture the dominant features of the solution of interest but also on the ability of this framework to compute fast and accurate approximations of the projection onto a subspace of tangent matrices and/or force vectors. The computation of the latter approximations is often referred to in the literature as hyper reduction. Hence, this paper also presents the energy‐conserving sampling and weighting (ECSW) hyper reduction method for discrete (or semi‐discrete), nonlinear, finite element structural dynamics models. Based on mesh sampling and the principle of virtual work, ECSW is natural for finite element computations and preserves an important energetic aspect of the high‐dimensional finite element model to be reduced. Equipped with this hyper reduction procedure, the aforementioned Galerkin projection framework is first demonstrated for several academic but challenging problems. Then, its potential for the effective solution of real problems is highlighted with the realistic simulation of the transient response of a vehicle to an underbody blast event. For this problem, the proposed nonlinear model reduction framework reduces the CPU time required by a typical high‐dimensional model by up to four orders of magnitude while maintaining a good level of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This article presents a nonlinear solver combining regression analysis and a multiscale simulation scheme. First, the proposed method repeats microscopic analysis of a local simulation domain, which is extracted from the entire global domain, to statistically estimate the relation(s) between the value of a dependent variable at a point and values at surrounding points. The relation is called regression function. Subsequent global analysis reveals the behavior of the global domain with only coarse‐grained points using the regression function quickly at low computational cost, which can be accomplished using a multiscale numerical solver, called the seamless‐domain method. The objective of the study is to solve a nonlinear problem accurately and at low cost by combining the 2 techniques. We present an example problem of a nonlinear steady‐state heat conduction analysis of a heterogeneous material. The proposed model using fewer than 1000 points generates a solution with precision similar to that of a standard finite‐element solution using hundreds of thousands of nodes. To investigate the relationship between the accuracy and computational time, we apply the seamless‐domain method under varying conditions such as the number of iterations of the prior analysis for statistical data learning.  相似文献   

5.
For general non-linear parametrized partial differential equations (PDEs), the standard Galerkin projection is no longer efficient to generate reduced-order models. This is because the evaluation of the integrals involving the non-linear terms has a high computational complexity and cannot be pre-computed. This situation also occurs for linear equations when the parametric dependence is nonaffine. In this paper, we propose an efficient approach to generate reduced-order models for large-scale systems derived from PDEs, which may involve non-linear terms and nonaffine parametric dependence. The main idea is to replace the non-linear and nonaffine terms with a coefficient-function approximation consisting of a linear combination of pre-computed basis functions with parameter-dependent coefficients. The coefficients are determined efficiently by an inexpensive and stable interpolation at some pre-computed points. The efficiency and accuracy of this method are demonstrated on several test cases, which show significant computational savings relative to the standard Galerkin projection reduced-order approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Applications where the diffusive and advective time scales are of similar order give rise to advection–diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models. Non‐Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propagation speeds in Fickian models. In this work, we implement a modified, frame‐invariant form of Cattaneo's hyperbolic diffusion relation within a spacetime discontinuous Galerkin advection–diffusion model. An h‐adaptive spacetime meshing procedure supports an asynchronous, patch‐by‐patch solution procedure with linear computational complexity in the number of spacetime elements. This localized solver enables the selective application of optimization algorithms in only those patches that require inequality constraints to ensure a non‐negative concentration solution. In contrast to some previous methods, we do not modify the numerical fluxes to enforce non‐negative concentrations. Thus, the element‐wise conservation properties that are intrinsic to discontinuous Galerkin models are defined with respect to physically meaningful Riemann fluxes on the element boundaries. We present numerical examples that demonstrate the effectiveness of the proposed model, and we explore the distinct features of hyperbolic advection–diffusion response in subcritical and supercritical flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A reduced order model (ROM) based on the proper orthogonal decomposition (POD)/Galerkin projection method is proposed as an alternative discretization of the linearized compressible Euler equations. It is shown that the numerical stability of the ROM is intimately tied to the choice of inner product used to define the Galerkin projection. For the linearized compressible Euler equations, a symmetry transformation motivates the construction of a weighted L2 inner product that guarantees certain stability bounds satisfied by the ROM. Sufficient conditions for well‐posedness and stability of the present Galerkin projection method applied to a general linear hyperbolic initial boundary value problem (IBVP) are stated and proven. Well‐posed and stable far‐field and solid wall boundary conditions are formulated for the linearized compressible Euler ROM using these more general results. A convergence analysis employing a stable penalty‐like formulation of the boundary conditions reveals that the ROM solution converges to the exact solution with refinement of both the numerical solution used to generate the ROM and of the POD basis. An a priori error estimate for the computed ROM solution is derived, and examined using a numerical test case. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

8.
We propose a hybrid formulation combining stochastic reduced basis methods with polynomial chaos expansions for solving linear random algebraic equations arising from discretization of stochastic partial differential equations. Our objective is to generalize stochastic reduced basis projection schemes to non-Gaussian uncertainty models and simplify the implementation of higher-order approximations. We employ basis vectors spanning the preconditioned stochastic Krylov subspace to represent the solution process. In the present formulation, the polynomial chaos decomposition technique is used to represent the stochastic basis vectors in terms of multidimensional Hermite polynomials. The Galerkin projection scheme is then employed to compute the undetermined coefficients in the reduced basis approximation. We present numerical studies on a linear structural problem where the Youngs modulus is represented using Gaussian as well as lognormal models to illustrate the performance of the hybrid stochastic reduced basis projection scheme. Comparison studies with the spectral stochastic finite element method suggest that the proposed hybrid formulation gives results of comparable accuracy at a lower computational cost.  相似文献   

9.
We present stochastic projection schemes for approximating the solution of a class of deterministic linear elliptic partial differential equations defined on random domains. The key idea is to carry out spatial discretization using a combination of finite element methods and stochastic mesh representations. We prove a result to establish the conditions that the input uncertainty model must satisfy to ensure the validity of the stochastic mesh representation and hence the well posedness of the problem. Finite element spatial discretization of the governing equations using a stochastic mesh representation results in a linear random algebraic system of equations in a polynomial chaos basis whose coefficients of expansion can be non‐intrusively computed either at the element or the global level. The resulting randomly parametrized algebraic equations are solved using stochastic projection schemes to approximate the response statistics. The proposed approach is demonstrated for modeling diffusion in a square domain with a rough wall and heat transfer analysis of a three‐dimensional gas turbine blade model with uncertainty in the cooling core geometry. The numerical results are compared against Monte–Carlo simulations, and it is shown that the proposed approach provides high‐quality approximations for the first two statistical moments at modest computational effort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
It is now commonly agreed that the global radial basis functions (GRBF) method is an attractive approach for approximating smooth functions. This superiority does not come free; one must find ways to circumvent the associated problem of ill‐conditioning and the high computational cost for solving dense matrix systems. We previously proposed different variants of adaptive methods for selecting proper trial subspaces so that the instability caused by inappropriately shaped parameters were minimized. In contrast, the compactly supported radial basis functions (CSRBF) are more relaxing on the smoothness requirements. By settling with the algebraic order of convergence only, the CSRBF method, provided the support radii are properly chosen, can approximate functions with less smoothness. The reality is that end users must know the functions to be approximated a priori to decide which method to be used; this is not practical if one is solving a time‐evolving partial differential equation. The solution could be smooth at the beginning but the formation of shocks may come later. In this paper, we propose a hybrid algorithm making use of both GRBF and CSRBF with other developed techniques for meshfree approximation with minimal fine tuning. The first contribution here is an adaptive node refinement scheme. Second, we apply the GRBFs (with adaptive subspace selection) on the adaptively generated data sites, and lastly, the CSRBF (with adaptive support selection) that can be used as a blackbox algorithm for robust approximations to a wider class of functions and for solving PDEs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We present an interpolation method for efficient approximation of parametrized functions. The method recognizes and exploits the low‐dimensional manifold structure of the parametrized functions to provide good approximation. Basic ingredients include a specific problem‐dependent basis set defining a low‐dimensional representation of the parametrized functions, and a set of ‘best interpolation points’ capturing the spatial‐parameter variation of the parametrized functions. The best interpolation points are defined as solution of a least‐squares minimization problem which can be solved efficiently using standard optimization algorithms. The approximation is then determined from the basis set and the best interpolation points through an inexpensive and stable interpolation procedure. In addition, an a posteriori error estimator is introduced to quantify the approximation error and requires little additional cost. Numerical results are presented to demonstrate the accuracy and efficiency of the method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, a discontinuous Galerkin finite element method with plane wave basis functions and Lagrange multiplier degrees of freedom was proposed for the efficient solution in two dimensions of Helmholtz problems in the mid‐frequency regime. In this paper, this method is extended to three dimensions and several new elements are proposed. Computational results obtained for several wave guide and acoustic scattering model problems demonstrate one to two orders of magnitude solution time improvement over the higher‐order Galerkin method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A methodology is introduced for rapid reduced‐order solution of stochastic partial differential equations. On the random domain, a generalized polynomial chaos expansion (GPCE) is used to generate a reduced subspace. GPCE involves expansion of the random variable as a linear combination of basis functions defined using orthogonal polynomials from the Askey series. A proper orthogonal decomposition (POD) approach coupled with the method of snapshots is used to generate a reduced solution space from the space spanned by the finite element basis functions on the spatial domain. POD methods have been extremely popular in fluid mechanics applications and have subsequently been applied to other interesting areas. They have been shown to be capable of representing complicated phenomena with a handful of degrees of freedom. This concurrent model reduction on the random and spatial domains is applied to stochastic partial differential equations (PDEs) in natural convection processes involving randomness in the porosity of the medium and the Rayleigh number. The results indicate that owing to the multiplicative nature of the concurrent model reduction, extremely large computational gains are realized without significant loss of accuracy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A new approach for the dimensional reduction via projection of nonlinear computational models based on the concept of local reduced‐order bases is presented. It is particularly suited for problems characterized by different physical regimes, parameter variations, or moving features such as discontinuities and fronts. Instead of approximating the solution of interest in a fixed lower‐dimensional subspace of global basis vectors, the proposed model order reduction method approximates this solution in a lower‐dimensional subspace generated by most appropriate local basis vectors. To this effect, the solution space is partitioned into subregions, and a local reduced‐order basis is constructed and assigned to each subregion offline. During the incremental solution online of the reduced problem, a local basis is chosen according to the subregion of the solution space where the current high‐dimensional solution lies. This is achievable in real time because the computational complexity of the selection algorithm scales with the dimension of the lower‐dimensional solution space. Because it is also applicable to the process of hyper reduction, the proposed method for nonlinear model order reduction is computationally efficient. Its potential for achieving large speedups while maintaining good accuracy is demonstrated for two nonlinear computational fluid and fluid‐structure‐electric interaction problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we address shortcomings of the method of exponential basis functions by extending it to general linear and non‐linear problems. In linear problems, the solution is approximated using a linear combination of exponential functions. The coefficients are calculated such that the homogenous form of equation is satisfied on some grid. To solve non‐linear problems, they are converted to into a succession of linear ones using a Newton–Kantorovich approach. The generalized exponential basis functions (GEBF) method developed can be implemented with greater ease compared with exponential basis functions, as all calculations can be performed using real numbers and no characteristic equation is needed. The details of an optimized implementation are described. We compare GEBF on some benchmark problems with methods in the literature, such as variants of the boundary element method, where GEBF shows a good performance. Also, in a 3D problem, we report the run time of the proposed method compared with that of Kratos, a parallel, highly optimized finite element code. The results show that in this example, to obtain the same level of error, much less computational effort is needed in the proposed method. Practical limitations might be encountered, however, for large problems because of dense matrix operations involved. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A combination of proper orthogonal decomposition (POD) analysis and in situ adaptive tabulation (ISAT) is proposed for the representation of parameter‐dependent solutions of coupled partial differential equation problems. POD is used for the low‐order representation of the spatial fields and ISAT for the local representation of the solution in the design parameter space. The accuracy of the method is easily controlled by free threshold parameters that can be adjusted according to user needs. The method is tested on a coupled fluid‐thermal problem: the design of a simplified aircraft air control system. It is successfully compared with the standard POD; although the POD is inaccurate in certain areas of the design parameters space, the POD–ISAT method achieves accuracy thanks to trust regions based on residuals of the fluid‐thermal problem. The presented POD–ISAT approach provides flexibility, robustness and tunable accuracy to represent solutions of parametrized partial differential equations.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
To be feasible for computationally intensive applications such as parametric studies, optimization, and control design, large‐scale finite element analysis requires model order reduction. This is particularly true in nonlinear settings that tend to dramatically increase computational complexity. Although significant progress has been achieved in the development of computational approaches for the reduction of nonlinear computational mechanics models, addressing the issue of contact remains a major hurdle. To this effect, this paper introduces a projection‐based model reduction approach for both static and dynamic contact problems. It features the application of a non‐negative matrix factorization scheme to the construction of a positive reduced‐order basis for the contact forces, and a greedy sampling algorithm coupled with an error indicator for achieving robustness with respect to model parameter variations. The proposed approach is successfully demonstrated for the reduction of several two‐dimensional, simple, but representative contact and self contact computational models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We consider the efficient numerical solution of the three‐dimensional wave equation with Neumann boundary conditions via time‐domain boundary integral equations. A space‐time Galerkin method with C‐smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A time‐convolutive variational hypersingular integral formulation of transient heat conduction over a 2‐D homogeneous domain is considered. The adopted discretization leads to a linear equation system, whose coefficient matrix is symmetric, and is generated by double integrations in space and time. Assuming polynomial shape functions for the boundary unknowns, a set of compact formulae for the analytical time integrations is established. The spatial integrations are performed numerically using very efficient formulae just recently proposed. The competitiveness from the computational point of view of the symmetric boundary integral equation approach proposed herein is investigated on the basis of an original computer implementation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号