共查询到20条相似文献,搜索用时 0 毫秒
1.
Jun Yang Yuhan Lin Jinfeng Wang Mingfang Lai Jing Li Jingjiang Liu Xin Tong Huiming Cheng 《应用聚合物科学杂志》2005,98(3):1087-1091
Nanocomposites based on atactic polypropylene (aPP) and multiwall carbon nanotubes were prepared by melt blending at 80°C with a Barabender mixer. The morphology, thermal stability, and dynamic mechanical properties of the obtained composites were studied subsequently. SEM observations indicate that the nanotubes are well dispersed in the aPP matrix. Each nanotube is covered by a layer of aPP molecules. Thermal stability of the aPP in nitrogen is found to be enhanced significantly by the addition of nanotubes. Peak temperature of the DTG curve for the nanocomposite with 5 wt % nanotube loading shows about 70°C higher than that of pure aPP. Dynamic mechanical properties of aPP are also influenced by nanotubes, as shown by the increase in the storage modulus as well as significantly broadened loss tanδ peak. These effects of nanotubes on the thermal stability and mechanical properties of aPP are explained by the adsorption effect of the aPP molecules on the nanotube surfaces in this study. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1087–1091, 2005 相似文献
2.
Md. Akramul Haque Md. Forhad Mina A.K.M. Moshiul Alam Md. Jellur Rahman Md. Abu Hashan Bhuiyan Tsutomu Asano 《Polymer Composites》2012,33(7):1094-1104
Multiwalled carbon nanotubes (MWCNTs)‐reinforced isotactic polypropylene (iPP) nanocomposites with low‐content of MWCNTs were fabricated using the melt‐cast techniques. The reinforced plastics were characterized by X‐ray diffraction (XRD) measurements, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical test, differential thermal analyses (DTA), and electrical tests. XRD studies exhibit the α‐crystal in the injection‐molded neat iPP with lamellar stacks having a long period of 150Å. Both the intensity of lamellar reflection and the thickness of long period increase with increasing the MWCNTs contents, indicating an enhancement of iPP crystallization by MWCNTs addition. This increase of lamellar thickness is analyzed to be consistent with that evaluated by DTA. SEM micrographs display larger MWCNTs aggregates with increasing amount of reinforcements and show a good adhesion between nanoparticles and iPP matrix. FTIR spectra reveal distinct chemical textures for the samples and confirm the existence of α‐crystal. Mechanical strengths, electrical conductivity, and dielectric constants are found to increase with increasing MWCNTs content, representing an improved performance of the nanocomposites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers 相似文献
3.
Md. Forhad Mina Md. Akramul Haque Md. Khairul Hassan Bhuiyan Md. Abdul Gafur Yukihiro Tamba Tsutomu Asano 《应用聚合物科学杂志》2010,118(1):312-319
Nanocomposites of isotactic polypropylene (iPP) and multiwalled carbon nanotubes (MWCNTs) with various contents of MWCNTs were fabricated by double molding techniques. X‐ray diffraction measurements reveal a development of α‐crystal with lamellar stacks having a long period of 150 Å in the neat iPP that increases to 165 Å in 2 wt % MWCNTs‐loaded composites, indicating that MWCNTs enhance crystallization of iPP as a nucleating factor. Mechanical properties, such as tensile strength, flexural strength, Young's modulus, tangent modulus, and microhardness are found to increase with increasing MWCNTs content. Thermal analyses represent an increase of crystallization and melting temperatures and a decrease of thermal stability of the composites with increasing MWCNTs. Changes in structural, mechanical, and thermal properties of the composites due to the addition of MWCNTs are elaborately discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
4.
The processing-structure-property relationships of multiwalled carbon nanotubes (MWNTs)/epoxy nanocomposites processed with a magnetic field have been studied. Samples were prepared by dispersing the nanotube in the epoxy and curing under an applied magnetic field. The nanocomposite morphology was characterized with Raman spectroscopy and wide angle X-ray scattering, and correlated with thermo-mechanical properties. The modulus parallel to the alignment direction, as measured by dynamic mechanical analysis, showed significant anisotropy, with a 72% increase over the neat resin, and a 24% increase over the sample tested perpendicular to the alignment direction. A modest enhancement in the coefficient of thermal expansion (CTE) parallel to the alignment direction was also observed. These enhancements were achieved even though the nanotubes were not fully aligned, as determined by Raman spectroscopy. The partial nanotube alignment is attributed to resin a gel time that is faster than the nanotube orientation dynamics. Thermal conductivity results are also presented. 相似文献
5.
Takashi Kashiwagi Eric Grulke Katrina Groth Kathryn Butler Semen Kharchenko 《Polymer》2004,45(12):4227-4239
The thermal and flammability properties of polypropylene/multi-walled carbon nanotube, (PP/MWNT) nanocomposites were measured with the MWNT content varied from 0.5 to 4% by mass. Dispersion of MWNTs in these nanocomposites was characterized by SEM and optical microscopy. Flammability properties were measured with a cone calorimeter in air and a gasification device in a nitrogen atmosphere. A significant reduction in the peak heat release rate was observed; the greatest reduction was obtained with a MWNT content of 1% by mass. Since the addition of carbon black powder to PP did not reduce the heat release rate as much as with the PP/MWNT nanocomposites, the size and shape of carbon particles appear to be important for effectively reducing the flammability of PP. The radiative ignition delay time of a nanocomposite having less than 2% by mass of MWNT was shorter than that of PP due to an increase in the radiation in-depth absorption coefficient by the addition of carbon nanotubes. The effects of residual iron particles and of defects in the MWNTs on the heat release rate of the nanocomposite were not significant. The flame retardant performance was achieved through the formation of a relatively uniform network-structured floccule layer covering the entire sample surface without any cracks or gaps. This layer re-emitted much of the incident radiation back into the gas phase from its hot surface and thus reduced the transmitted flux to the receding PP layers below it, slowing the PP pyrolysis rate. To gain insight into this phenomena, thermal conductivities of the nanocomposites were measured as a function of temperature while the thermal conductivity of the nanocomposite increases with an increase in MWNT content, the effect being particularly large above 160 °C, this increase is not as dramatic as the increase in electrical conductivity, however. 相似文献
6.
Cellulose acetate (CA)‐based nanocomposites with various contents of neat multiwalled carbon nanotube (MWCNT) or acid‐treated one (MWCNT‐COOH) are prepared via melt‐compounding method and investigated their morphology, thermal stability, mechanical, and electrical properties. SEM microphotographs reveal that MWCNT‐COOHs are dispersed uniformly in the CA matrix, compared with neat MWCNTs. FTIR spectra support that there exists a specific interaction between carboxyl groups of MWCNT‐COOHs and ester groups of CA, indicating good interfacial adhesion between MWCNT‐COOHs and CA matrix. Accordingly, thermal stability and dynamic mechanical properties of CA/MWCNT‐COOH nanocomposites were higher than those of CA/MWCNT composites. On the contrary, electrical volume resistivities of CA/MWCNT‐COOH nanocomposites are found to be somewhat higher than those of CA/MWCNT composites, which is because of the deterioration of graphene structures for MWCNT‐COOHs and the good dispersion of MWCNT‐COOHs in the CA matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
Asad Hameed Mohammad Islam Iftikhar ahmad Nasir Mahmood Shaukat Saeed Hassan Javed 《Polymer Composites》2015,36(10):1891-1898
In this study, the effects of functionalization and weight fraction of mutliwalled carbon nanotubes (CNTs) were investigated on mechanical and thermomechanical properties of CNT/Epoxy composite. Epoxy resin was used as matrix material with pristine‐, COOH‐, and NH2‐functionalized CNTs as reinforcements in weight fractions of 0.1, 0.5, and 1.0%. Varying (increasing) the weight fraction and changing type (pristine or functionalized) of CNTs caused increment in Young's modulus and tensile strength as observed during mechanical tests. CNT reinforcement improved thermal stability of the nanocomposites as observed by thermogravimetric analysis. Thermomechanical analysis showed a slight reduction in free volume of the polymer, that is a drop in coefficient of thermal expansion, prior to glass transition temperature (Tg) beside a slight increase in Tg value. Dynamic mechanical analysis indicated an increase in storage modulus and Tg owing to the strength addition of CNT to the matrix alongside the hardener. Scanning electron microscopy analysis of the fractured surface(s) revealed that CNTs were well dispersed with no agglomeration and resulted in reinforcing the matrix. POLYM. COMPOS., 36:1891–1898, 2015. © 2014 Society of Plastics Engineers 相似文献
8.
Myung‐Sub Kim Jun Yan Kyung‐Min Kang Kyung‐Hoon Joo Jitendra K. Pandey Yeon‐June Kang Sung‐Hoon Ahn 《应用聚合物科学杂志》2013,130(1):504-509
In this article, polypropylene (PP)/clay/carbon nanotube (CNT) composites were prepared via a solution blending method. Sound transmission loss (STL), determined with an impedance tube, was used to characterize their soundproofing properties. The STL for the PP/4.8 wt % clay/0.5 wt % CNT composite was about 15–21 dB higher than that for pure PP at high frequencies (3200–6400 Hz) and about 8–14 dB higher at low frequencies (580–620 Hz). X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the crystallinity and the microstructure. A synergistic effect on the STL was established between the structure of the homogeneous dispersion and strong interfacial adhesion. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
9.
Polypropylene (PP) nanocomposites filled with the pristine multi‐wall carbon nanotubes (CNTs) and the purified CNTs were prepared by melt blending. The microstructure and linear viscoelastic properties wereinvestigated using rheological and morphological measurements. The results show that the purified CNTs disperse uniformly in the PP matrix. At low frequencies, frequency dependence of modulus weakens clearly with the addition of the CNTs, indicating that the long‐range motion of the polymer chains is restrained by the presence of the CNTs. Percolation networks form when the loading levels achieve up to 3 and 1.5 wt% for the composites with the pristine CNTs (PPCNTs) and the purified CNTs (PPcCNTs), respectively. The linear relaxation modulus increases with increasing loading level. And for composites with loading levels above percolation concentration, the modulus appears to reach a plateau at long time scales due to the formation of percolation network. Tensile strength and impact strength are simultaneously improved with the addition of the CNTs. The better the dispersion of the CNTs, the greater the improvement of the tensile strength and the impact strength. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers 相似文献
10.
Carmen K. Abuoudah Yaser E. Greish Basim Abu-Jdayil Ehab M. El-said Muhammad Z. Iqbal 《应用聚合物科学杂志》2021,138(11):50024
Small amount of large surface area graphene (G) is expected to significantly alter functional properties of polymers. The property enhancement is a function of degree of exfoliation and dispersion of G as well as its compatibility with base polymer. However, nonpolar nature of polyolefins such as polypropylene (PP) restricts homogeneous dispersion of G, leading to significant agglomeration and properties reduction. In this work, two compatibilizers, poly (ethylene-co-butyl acrylate) (EBA) (new compatibilizer) and PP-grafted-maleic anhydride (MA-PP) (conventional compatibilizer) were compared to enhance the dispersion efficacy of G in PP. The EBA-compatibilized nanocomposites exhibited 44% increase in the Young's modulus compared to 32% increment in MA-PP-compatibilized nanocomposites. Higher elongation at break for EBA-compatibilized nanocomposites is attributed to lower degree of crystallinity in these nanocomposites. On the other hand, EBA-compatibilized nanocomposites showed significantly improved thermal stability compared to MA-PP-compatibilized nanocomposites. The results indicate that EBA may act as a potential compatibilizer for G/PP nanocomposites. 相似文献
11.
Effect of morphology on the permeability,mechanical and thermal properties of polypropylene/SiO2 nanocomposites 下载免费PDF全文
Spherical silica nanoparticles with 20 and 100 nm diameters and organic‐template layered silica nanoparticles synthesized by the sol‐gel method were melt blended with a polypropylene (PP) matrix in order to study and quantify their effect on the oxygen and water vapor permeability and mechanical and thermal behavior. With regard to barrier properties, the spherical nanoparticles barely increased the oxygen permeability at low loads (≤10 wt%); meanwhile the layered nanoparticles dramatically increased it even at low loading (<5 wt%) probably due to the percolation effect. The changes in water vapor permeability were similar to those in oxygen permeability. The repulsive interaction between nanoparticles and PP forms interconnecting voids where the gas permeates. Tensile stress–strain tests showed that the composites present up to a 56% increase in the elastic modulus with spherical nanoparticles at 20 wt%, while layered nanoparticles show a decrease probably due to agglomerations and voids. Thermogravimetric analysis under inert conditions showed that the nanoparticles improved the PP thermal degradation process through the adsorption of volatile compounds on their surface, where the smaller spherical nanoparticles show the greatest stabilization. © 2015 Society of Chemical Industry 相似文献
12.
Mohammad Razavi‐Nouri 《应用聚合物科学杂志》2012,124(3):2541-2549
This paper is devoted to the preparation of thermoplastic nanocomposites of polypropylene (PP) and different amounts of single‐walled carbon nanotubes (SWNTs) in the range 0.25–2 wt %. The effect of SWNT content on the dynamic mechanical behavior, thermal degradation, crystalline structure, and the kinetic crystallizability of PP were studied. The results obtained from dynamic mechanical thermal analyzer (DMTA) showed that the maximum storage modulus was achieved when 1 wt % SWNT was added into the pristine polymer. Thermal stability of the nanocomposites was measured by thermogravimetric analyzer (TGA). From the TGA results, it was found that the weight fraction of PP which was located at the interface for the nanocomposite containing 0.5% SWNT was about 60%, and this value did not change much with the addition of higher amounts of SWNT. Moreover, the thickness of the interface between PP and SWNT was estimated to be of the order of 101 nm which is very close to the radii of gyration of PP molecular chains. Wide angle X‐ray diffractometer (WAXD) was used to explore the crystalline structure of water and slow‐cooled samples. It was found that the crystallization of PP in 040 lattice plane increased for the nanocomposites compared with PP for both cooling rates studied. It was also found that the kinetic crystallizability values were nearly the same for PP and the nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
13.
Organically modified and unmodified montmorillonite clays (Cloisite NA, Cloisite 30B and Cloisite 15A), sepiolite (Pangel B20) and nanosilica (Aerosil 300) were incorporated into hydrogenated nitrile rubber (HNBR) matrix by solution process in order to study the effect of these nanofillers on thermal, mechanical and dynamic mechanical properties of HNBR. It was found that on addition of only 4 phr of nanofiller to neat HNBR, the temperature at which maximum degradation took place (Tmax) increased by 4 to 16°C, while the modulus at 100% elongation and the tensile strength were enhanced by almost 40–60% and 100–300% respectively, depending upon nature of the nanofiller. It was further observed that Tmax was the highest in the case of nanosilica‐based nanocomposite with 4 phr of filler loading. The increment of storage modulus was highest for sepiolite‐HNBR and Cloisite 30B‐HNBR nanocomposites at 25°C, while the modulus at 100% elongation was found maximum for sepiolite‐HNBR nanocomposite at the same loading. A similar trend was observed in the case of another grade of HNBR having similar ACN content, but different diene level. The results were explained by x‐ray diffraction, transmission electron microscopy, and atomic force microscopy studies. The above results were further explained with the help of thermodynamics. Effect of different filler loadings (2, 4, 6, 8, and 16 phr) on the properties of HNBR nanocomposites was further investigated. Both thermal as well as mechanical properties were found to be highest at 8 phr of filler loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
14.
《Reactive and Functional Polymers》2012,72(6):383-392
Poly(ε-caprolactone)-coated (covalently grafted and physisorbed) multi-walled carbon nanotubes (MWCNTs) were synthesized by ring-opening polymerization (ROP) of ε-caprolactone initiated from primary amines grafted on the MWCNT surface through the exposure to atomic nitrogen generated in a microwave-induced plasma. The morphology of the recovered nanohybrids and the amount of grafted polymer chains were studied by transmission electron microscopy (TEM) and thermogravimetric analysis (TGA), respectively. These nanohybrids were used as highly filled masterbatches to be dispersed within either poly(ε-caprolactone) (PCL) or high-density polyethylene (HDPE) matrices in the molten state. The thermal behavior as well as the electrical properties of the so-produced nanocomposites were characterized and correlated to their morphology. The HDPE filled with PCL-coated MWCNTs nanohybrids showed better electrical properties than HDPE filled with non-modified MWCNTs. The electrical properties improvement was associated to a better dispersion of the PCL-coated MWCNTs and, also, to the exclusive presence of PCL coating in tunneling junction between the nanotubes. 相似文献
15.
In this study, we prepared nanocomposites comprising multiwalled carbon nanotubes (MWCNTs) and polybenzoxazine (PBZ). The MWCNTs were purified through microwave digestion to remove most of the amorphous carbon and metal impurities. After purification, MWCNTs were treated with H2SO4/HNO3 (3 : 1) to introduce hydroxyl and carboxyl groups onto their surfaces. Raman spectroscopy revealed the percentage of nanotube content improved after prolonged microwave treatment, as evidenced by the decrease in the ratio of the D (1328 cm?1) and G (1583 cm?1) bands. For the untreated MWCNTs, the ID/IG ratio was 0.56. After microwave treatment for 40 min, the value decreased to 0.29, indicating that the percentage of nanotube content improved. Dynamic mechanical analyses (DMAs) revealed that the storage moduli and the Tgs of the MWCNTs/PBZ nanocomposites were higher than that of the pristine PBZ. This is due to the nanometer‐scale MWCNTs restricting the motion of the macromolecular chains in the nanocomposites. Transmission electron microscopy (TEM) image revealed that the MWCNTs were well dispersed within the PBZ matrix on the nanoscale when the MWCNT content was less than 2.0 phr. The coefficient of thermal expansion (CTE) of the nanocomposites decreased on increasing the MWCNTs content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
16.
Isotactic polypropylene filled with various contents of multi‐walled carbon nanotubes (MWCNTs) were fabricated by the injection molding technique and then rolled at room temperature. The unrolled samples (URS) and rolled samples (RS) were characterized by X‐ray diffraction studies, scanning electron microscopy, mechanical and micromechanical tests and differential thermal analyses. Although the URS exhibit the lamellar α‐crystal with a*‐axis orientation, the RS show the same crystals with both a*‐ and c‐axis orientation, which is explained by interlamellar and intralamellar slips and lamellar destruction. Scanning electron micrographs display distinct surface morphological features for both URS and RS. While the tensile strength of RS is higher than that of URS, the Young's modulus (Y) is found to be lower than that of URS. Anisotropy in microharness (H) parallel and perpendicular to the rolled direction has been detected, although H for both samples increases with increasing MWCNT contents. The average relationship H/Y ≈ 0.18 as estimated for URS is closer to the predicted value of 0.10 for polymers than the H/Y ≈ 0.22 obtained for RS. The lamellar thickness for URS increases with increase of MWCNT content and that for RS decreases, as evaluated from both differential thermal analyses and X‐ray diffraction data. Copyright © 2011 Society of Chemical Industry 相似文献
17.
The tensile and fracture behaviour of neat α and β nucleated isotactic polypropylene and rubber-modified α and β nucleated isotactic polypropylene has been investigated at test speeds of 0.0001-10 ms−1 in the temperature range −30 to +60 °C. The presence of the β phase had little effect at low temperature. However, at +25 and +60 °C, it increased the speeds corresponding to the ductile-brittle transition in the neat polymer by more than three decades. This behaviour has been linked to changes in microdeformation mechanisms observed at the lamellar and spherulitic level, an increase in cavitational deformation in tensile tests and an increase in the strength of the β relaxation in dynamic mechanical spectra. In the blends, the presence of the β phase led to somewhat higher energy dissipation in regimes of ductile fracture. However, the ductile-brittle transitions were not significantly affected. The modifier phase was therefore inferred to control the initiation and propagation of the plastic zone ahead of the crack tip during fracture. 相似文献
18.
The effect of calcium carbonate (CaCO3) on the mechanical properties (with heat treatment) and thermal properties of polypropylene and isotactic polypropylene (i‐PP)/ethylene vinyl acetate (EVA) blends was investigated. CaCO3, in five different concentrations (3, 6, 9, 12l, and 15 wt %), was added to i‐PP/EVA (88/12) to produce ternary composites. The mechanical properties, including the yield and tensile strengths, elastic modulus, Izod impact strength for notch radii of 0.25 and 1 mm, and hardness with and without an annealing heat treatment, and the thermal properties, such as the melting point and melt‐flow index, of the composites were investigated. The annealing heat treatment was carried out at 100°C for three different holding times: 75, 100, and 150 h. On the basis of the results, attempts were made to establish a relationship between the CaCO3 content, the annealing holding time, and the mechanical and thermal properties to obtain the best results. The tensile test results showed that the heat treatment was not effective for the ultimate tensile strength, and the yield strength and tensile strength decreased gradually as the CaCO3 content increased. However, CaCO3 was effective for higher elastic modulus, impact strength, and hardness values. A considerable increase in the elastic modulus was found with a 3% CaCO3 concentration for a holding time of 100 h. The maximum impact strength for a notch radius of 1 mm was obtained with 3% CaCO3 with annealing for a holding time of 100 h, whereas a 9% CaCO3 concentration produced higher toughness values for a notch radius of 0.25 mm. The fracture surfaces also supported the results from the Izod impact tests. Similarly, hardness values increased with the annealing heat treatment and increasing CaCO3 content. However, different holding times showed similar effects on the hardness values. The increased CaCO3 content caused the melting point to increase 5°C, whereas the melt‐flow index showed a sharp decrease as the CaCO3 content increased to 3%. Taking into consideration the mechanical and thermal properties and the annealing holding time, we recommend a CaCO3 concentration of 3% with an annealing heat treatment for 100 h for optimum properties of such ternary composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1126–1137, 2005 相似文献
19.
The structural, crystalline, thermal, morphological, and mechanical properties of isotactic polypropylene (iPP) functionalized by lower energy ultraviolet (UV) irradiation are studied by means of infrared spectroscopy (IR), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), thermogravimetry (TG), thermomechanical analysis (TMA), polariscope, and mechanical measurements. After the UV irradiation in less than a few hours, the oxygen containing polar groups have been introduced onto iPP chains. DSC analysis shows that a new melting peak is observed around 150°C for the UV irradiated iPP, indicating that there is a α‐phase to β‐phase transition during UV irradiation process. Under polariscope, the morphology of the UV irradiated iPP is changed, and the deformed α‐phase morphology can be observed. DSC and WAXD analysis reveal for the crystallinity of the UV‐irradiated iPP increase with UV time, but the relative level and the order of β‐phase increase and then decrease with increasing UV time. Under the controlled UV time, the thermomechanical deformation of iPP decrease, and the initial and final thermal degradation temperature of iPP rises up by 70 to 125°C higher, respectively, indicating that the UV‐irradiated iPP has higher thermal stability than the non‐UV irradiated iPP. The tensile and impact strength, the elongation at break, and the Young's modulus of the UV‐irradiated iPP are enhanced, exhibiting the toughened and strengthened effects. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1456–1466, 2001 相似文献
20.
Pingan Song Zhenhu Cao Yuanzheng Cai Liping Zhao Zhengping Fang Shenyuan Fu 《Polymer》2011,52(18):4001-4010
Despite the great potential of graphene as the nanofiller, to achieve homogeneous dispersion remains the key challenge for effectively reinforcing the polymer. Here, we report an eco-friendly strategy for fabricating the polymer nanocomposites with well-dispersed graphene sheets in the polymer matrix via first coating graphene using polypropylene (PP) latex and then melt-blending the coated graphene with PP matrix. A ~75% increase in yield strength and a ~74% increase in the Young’s modulus of PP are achieved by addition of only 0.42 vol% of graphene due to the effective external load transfer. The glass transition temperature of PP is enhanced by ~2.5 °C by incorporating only 0.041 vol% graphene. The thermal oxidative stability of PP is also remarkably improved with the addition of graphene, for example, compared with neat PP, the initial degradation temperature is enhanced by 26 °C at only 0.42 vol% of graphene loading. 相似文献