首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dynamic mechanical analysis has been performed on composite materials of polycarbonates (PC) and multi-walled carbon nanotubes (MWCNT) for evaluation of their mechanical hardness and storage modulus under the combined effects of variable loading frequencies and temperature conditions. The PC-based engineering machine components that are subjected to variable external loads and temperature conditions are not durable owing to the viscoelastic properties of PC. Composites of PC with MWCNT (2, 5 and 10 wt%) were fabricated and their mechanical characterization tests revealed that with increase in MWCNT composition both storage modulus and hardness enhanced significantly in comparison to pure PC. For 10 wt% PC/MWCNT composite, the average storage modulus increased in the range of 40–92%, while the average hardness was enhanced in a range of 88–121% for the combined effect of temperature range of 30–90 °C and loading frequency range of 30–230 Hz. With increase in temperature, the maxima of storage moduli and hardness for these composites shifted toward higher loading frequencies, indicating that these composites can be used for wider loading frequency range. Therefore, the experimental results of this paper have shown that the mechanical properties of PC-based composite materials with minor MWCNT compositions are enhanced significantly and hence can be used for automotive and aerospace engine parts where loading frequencies are high and temperature conditions are variable.  相似文献   

2.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

3.
Nanocomposites of isotactic polypropylene (iPP) and multiwalled carbon nanotubes (MWCNTs) with various contents of MWCNTs were fabricated by double molding techniques. X‐ray diffraction measurements reveal a development of α‐crystal with lamellar stacks having a long period of 150 Å in the neat iPP that increases to 165 Å in 2 wt % MWCNTs‐loaded composites, indicating that MWCNTs enhance crystallization of iPP as a nucleating factor. Mechanical properties, such as tensile strength, flexural strength, Young's modulus, tangent modulus, and microhardness are found to increase with increasing MWCNTs content. Thermal analyses represent an increase of crystallization and melting temperatures and a decrease of thermal stability of the composites with increasing MWCNTs. Changes in structural, mechanical, and thermal properties of the composites due to the addition of MWCNTs are elaborately discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Multiwalled carbon nanotubes‐polymethyl methacrylate composites (MWCNT‐PMMA) were prepared by an in situ polymerization method. The effect of nanotube content and their surface functionalization on the mechanical properties of the resulting nanocomposites was investigated. The use of only 1.8 wt% functionalized tubes improved flexural modulus by about 43% and flexural strength by about 60%. In situ polymerization using functionalized tubes improved interfacial bonding strength due to a chemical interaction between carbon nanotubes and the growing PMMA, which resulted in improved load transfer mechanism. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

5.
A procedure is proposed to prepare poly(vinylidene fluoride) (PVDF) multiwalled carbon nanotubes (MWCNTs) nanocomposite thin films with improved mechanical and dielectric properties compared to the pure PVDF films. The PVDF/MWCNT mixture with a composition range from 0.0 to 5.0% MWCNTs by weight was formed using solution blending and the ultrasonic dispersion method and then spin coated on a rotating glass substrate to produce films nearly 20 μ thick. Results indicate that the appropriate addition of MWCNTs (up to 3.0 wt%) to PVDF can significantly increase its elastic modulus while decrease its fracture toughness. The elastic modulus shows softening at a 5.0 wt% MWCNT loading. The DC and AC conductivity of the composite films were also examined with various MWCNTs concentrations. The dielectric constants were found more than doubled for 0.5 wt% MWCNTs composite compared to the values for the pure PVDF. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
Introduction of hydrogen bonding sites onto multi‐walled carbon nanotubes (MWCNTs) included carboxylic acid, amide‐amine, and novel amide‐urea MWCNTs for the formation of homogenous polyurethane composites. Acid oxidation and subsequent derivatization introduced hydrogen bonding functionality onto MWCNTs to reveal the effect of surface functionalization on mechanical properties in a 45 wt% hard segment polyurethane matrix. Raman spectroscopy showed an increase in the D/G peak ratio, which indicated successful oxidation, and X‐ray photoelectron spectroscopy also revealed elemental compositions that supported each step of the functionalization strategy. Thermogravimetric analysis supported functionalization with an increase in percent weight loss for each functionalization, and the MWCNT surface functionalization determined pH‐dependent dispersibility. The nonfunctionalized MWCNT composites showed poor dispersion with transmission electron microscopy, and in sharp contrast, the functionalized composites displayed homogenous dispersions. Tensile testing revealed improved stress at break in the functionalized MWCNT composites at low loadings due to homogenous dispersion. POLYM. COMPOS., 37:1425–1434, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Guang-Xin Chen 《Carbon》2007,45(12):2334-2340
Poly(vinylidene fluoride) (PVDF)/multiwalled carbon nanotube (MWCNT) composites were prepared using a novel ultrahigh-shear extruder by directly mixing MWCNT with PVDF in the molten state. A special feedback-type screw was used to obtain a high shear field and obtain a very uniform dispersion of the nanotubes in the polymer matrix under a higher screw rotation speed. Raman spectroscopy and scanning electron microscopy were used to determine the interaction and dispersion of nanotubes in the PVDF. The linear viscoelastic behavior and electrical conductivity of these composites were investigated. At low-frequencies, the storage shear modulus (G′) becomes almost independent of the frequency as nanotube loading increases, suggesting the onset of solid-like behavior in these composites. By plotting G′ vs. nanotube loading and fitting with a power-law function, we found that the rheological threshold of high-shear processed composites is about 0.96 wt% whereas that of low-shear processed composites is about 1.76 wt%. The electrical percolation threshold of high-shear processed composites is lower than that of low-shear processed composites.  相似文献   

8.
A novel diamine bearing aromatic pendant triazole ring, namely, 3,5-diamino-N-(1H-[1,2,4]triazol-3-yl)-benzamide, was successfully synthesized. The prepared diamine and a commercial dianhydride were reacted in situ in the presence of carboxylated multi-walled carbon nanotubes (MWCNTs) with stirring to give a homogeneous MWCNT/poly(amic acid) mixture which was then heated under a heating program to give a series of MWCNT/polyimide (PI) composites with different proportions of MWCNT (5, 10, and 15 wt%). The composite films were tested for different properties including spectral, morphological, thermal, and mechanical properties. Scanning and transmission electron microscopy revealed the modified MWCNTs were well dispersed in the PI matrix while the structure of the polymer and the MWCNTs structure were stable in the preparation process. The thermal stability of the films containing MWCNTs was improved as the MWCNT content increased from 5 to 15 wt% due to the improved interfacial interaction between the PI matrix and surface-modified MWCNTs. Tensile tests on the composites showed an increase in the elastic modulus and the yield strength, and decrease in the failure strain.  相似文献   

9.
This paper reports the results of studies on the effect of phenol functionalization of carbon nanotubes (CNTs) on the mechanical and dynamic mechanical properties of natural rubber (NR) composites. Fourier transform infrared spectrometry (FTIR) indicates characteristic peaks for ether and aromatic rings in the case of phenol functionalized CNT. Although differential scanning calorimetric (DSC) studies show no changes in the glass‐rubber transition temperature (Tg) of NR in the nanocomposites due to surface modification of CNT, dynamic mechanical studies show marginal shifting of Tg to higher temperature, the effect being pronounced in the case of functionalized CNT. Stress‐strain plots suggest an optimum loading of 5 phr CNT in NR formulations and the phenolic functionalization of CNT does not affect significantly the stress‐strain properties of the NR nanocomposites. The storage moduli register an increase in the presence of CNT and this increase is greater in the case of functionalized CNT. Loss tangent showed a decrease in the presence of CNT, and the effect is more pronounced in the case of phenol functionalized CNT. Transmission electron microscopy (TEM) reveals that phenol functionalization causes improvement in dispersion of CNT in NR matrix. This is corroborated by the increase in electrical resistivity in the case of phenol functionalized CNT/NR composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Ultra high molecular weight polyethylene (UHMWPE) composites reinforced with multiwalled carbon nanotubes (MWCNT) were produced using planetary ball milling. The aim was to develop a more wear resistant composite with improved mechanical properties to be used in stress bearing joints. The effect of manufacturing parameters such as the effect of ball milling time and rotational speed on the final composite was analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), particle size distribution, and contact angle measurements. Ball milling as a mixing technique for UHMWPE based composites is not a new approach but yet, the effect of time, rotational speed, loading of milling jar, and type of ball mill has not been reported properly for UHMWPE. Composites with 0.5 and 1.0 wt% UHMWPE/MWCNTs were manufactured with different rotational speed and mixing times. The results indicate that rotational speed rather than mixing time is important for dispersing MWCNTs using planetary ball milling. Tensile test showed a slight decrease for the MWCNT concentration of 1 wt% suggesting that this amount is the threshold for a satisfactory distribution of the fillers in the matrix. POLYM. COMPOS. 37:1128–1136, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
This article reports the rheological behavior of nanocomposites of isotactic polypropylene with both unmodified multiwall carbon nanotubes (CNTs) and phenol and 1‐octadecanol (C18) functionalized CNT (f‐CNT) at 0.1, 0.25, 1.0, and 5.0 wt% of the nanofillers. The incorporation of CNT at low loadings of 0.1 and 0.25 wt% decreases the storage and loss modulus and complex viscosity of the system, especially for the case of using f‐CNT. Out of the two types of functionalizations, C18 functionalization registers the lowest modulus and viscosity and displays processing aid behavior at 0.1 wt% loading, which is believed to be due to the disruption of the polymer entanglements. As the nanofiller loading increases to 1 wt%, the disruption of polymer entanglements effect is balanced by the hydrodynamic effect and subsequently neat polypropylene (PP), and the filled PP systems show similar modulus and complex viscosity. As the nanofiller loading increases further to 5 wt%, the hydrodynamic effect becomes the dominating factor, and the modulus and the complex viscosity of the nanofilled system become greater than that of neat PP. Results suggest that the 0.1 wt% loading of C18 f‐CNT could be a useful processing aid additive for improving polypropylene processability. POLYM. ENG. SCI., 52:1868–1873, 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
In this work well uniform dispersion of single-walled carbon nanotubes (SWNTs) in isotactic polypropylene (iPP) was achieved by shear mixing. The results obtained from the differential scanning calorimetry curves indicate that the addition of low SWNT amounts (less than 1 wt%) led to an increase in the rate of polymer crystallization with no substantial changes in the crystalline structure, as confirmed by X-ray diffraction. The tensile mechanical properties showed that Young’s modulus and tensile strength considerably increase in the presence of nanotubes, with a maximum for 0.75 wt%. The reinforcing effect of SWNTs was also confirmed by dynamic mechanical analysis where, by adding nanotubes, a noticeable increase in the storage modulus was detected. The beneficial effects of SWNT incorporation was underlined comparing the results obtained with those of carbon black used as a filler.  相似文献   

13.
A series of nanocomposites based on a new semi-crystalline polyimide (PI) and multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization. The TEM measurement reveals the improved dispersion of carboxylic acid-functionalized MWCNTs (COOH-MWCNTs) in semi-crystalline PI compared with pristine MWCNTs. The TGA analysis show that the concentration of carboxylic acid groups on the surface of nanotubes is about 4.34 wt%. The FT-IR spectroscopy analysis indicate that the imide rings of the PI interact non-covalently with nanotubes. The Polarized optical microscopy observation reveals significant morphology evolution in semi-crystalline PI induced by MWCNTs. The SEM micrographs suggest the strong interfacial interaction between COOH-MWCNTs and PI main chains, and significant changes in the fracture surfaces morphology. The WAXRD measurements reveal that COOH-MWCNTs promote the semi-crystalline PI crystallinity and structure change. COOH-MWCNTs can more efficiently improve the mechanical and thermal properties of resulting nanocomposites than pristine MWCNTs. COOH-MWCNT/PI nanocomposites show increases of Young’s modulus and yield strength, as high as 20–30 %, without sacrificing the elongation at break at loadings of 0.5 wt% nanotubes. Furthermore, with increasing the loadings of COOH-MWCNTs to 1.0 wt%, Young’s modulus and yield strength decrease due to nanotube aggregation, but elongation at break increase about 46 %. An abrupt increase of elongation at break in pristine MWCNT/PI nanocomposites was also registered at nanotubes loadings increasing from 0.5 to 1 wt%. These results indicate that the properties of semi-crystalline PI nanocomposites reinforced with carbon nanotubes are not only determined by the dispersion of nanotubes in the PI matrix and their interfacial interactions, but also by the crystalline phase morphology evolution in the PI matrix.  相似文献   

14.
In this work, the potential of silicate nanotubes of the naturally occurring mineral halloysite as filler for polyamide 6 (PA 6) nanocomposites is evaluated. Several PA 6/halloysite composites with 0 wt% to 30 wt% filler loading using two different grades of PA 6 were prepared. In order to elucidate the influence of molecular weight on the properties of the nanocomposites, mechanical resp. rheological experiments (i) below the glass transition temperature Tg of PA 6, (ii) between Tg and the melting temperature Tm of PA 6 and (iii) above Tm were performed. Our investigations reveal that the addition of halloysite nanotubes favours the formation of the γ-modification for the low molar mass PA 6. Furthermore, the storage modulus, the tensile modulus and the yield stress of the composites increase with concentration of halloysite, an effect which is strongly pronounced at very low filler fractions for the low molar mass PA 6 composites. The increase of the storage modulus which was measured in dynamic-mechanical experiments is mostly dominant in the temperature interval from 55 °C to 100 °C, i.e. above the glass transition temperature of PA 6. Rheological investigations showed that the shear viscosity is only moderately increased by the addition of a low fraction of halloysite to PA 6, and nanocomposites with 30 wt% halloysite can be still processed. In summary, halloysite nanotubes are promising and inexpensive candidates for increasing the stiffness of PA 6 while maintaining very good flow properties.  相似文献   

15.
Polymethylmethacrylate (PMMA) and functionalized multiwalled carbon nanotube (F‐MWCNT) based composite films were prepared using solution casting method. Nanoindentation and scratch measurements were carried out to study the influence of F‐MWCNT as the reinforcement on the mechanical properties of the composite at the sub‐micron scale. The composites were prepared with varying weight percentages of F‐MWCNT in the PMMA matrix. The composites containing an adequate amount (0.25 wt%) of F‐MWCNT was found to demonstrate the maximum nanomechanical properties, viz. hardness, elastic modulus, recovery index. Scratch resistance measured in terms of coefficient of friction, also showed maximum value for the PMMA composite reinforced with 0.25 wt% of F‐MWCNT. POLYM. COMPOS., 35:948–955, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
The use of multi‐walled carbon nanotubes (MWCNT) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA), and polystyrene (PS) has been studied. MWCNT were synthesized by chemical vapor deposition (CVD) technique using ferrocene‐toluene mixture. As‐prepared nanotubes were ultrasonically dispersed in toluene and subsequently dispersed in PMMA and PS. Thin polymer composite films were fabricated by solvent casting. The effect of nanotube content on the electrical and mechanical properties of the nanocomposites was investigated. An improvement in electrical conductivity from insulating to conducting with increasing MWCNT content was observed. The carbon nanotube network showed a classical percolating network behavior with a low percolation threshold. Electromagnetic interference (EMI) shielding effectiveness value of about 18 dB was obtained in the frequency range 8.0–12 GHz (X‐band), for a 10 vol% CNT loading. An improved composite fabrication process using casting followed by compression molding and use of functionalized MWCNT resulted in increased composites strength. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
Three different types of epoxy-functionalized multi-walled carbon nanotubes (EpCNTs) were prepared by multiple covalent functionalization methods. The EpCNTs were characterized by thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), and Raman spectroscopy to confirm covalent functionalization. The effect of the different chemistries on the adhesive properties was compared to a neat commercial epoxy (Hexion formulation 4007) using functionalized and unfunctionalized multi-walled carbon nanotubes (MWCNT) at 0.5, 1, 2, 3, 5, and 10 wt%. It was found that an EpCNT at 1 wt% increased the lap shear strength, tested using the American Society for Testing and Materials standard test D1002, by 36% over the unfilled epoxy formulation and by 27% over a 1 wt% unmodified MWCNT control sample. SEM images revealed a fracture surface morphology change with the incorporation of EpCNT and a deflection of the crack fronts at the site of embedded CNTs, as the mechanism accounting for increased adhesive strength. Rheological studies showed non-linear viscosity and DSC cure studies showed an alteration of cure kinetics with increased CNT concentration, and these effects were more pronounced for EpCNT.  相似文献   

18.
Polypropylene nanocomposites containing multiwall carbon nanotubes (MWCNT), from 0.1 to 3 wt %, are prepared by dilution of a polypropylene based masterbatch (20% MWCNT) with isotactic polypropylene (iPP) using extrusion processing. CNT are found to enhance significantly the thermal stability of iPP in nitrogen and air atmosphere. Dynamic mechanical analysis and tensile tests confirm the reinforcement effect of small amount of nanotubes in iPP. Rheology, structure, and properties are correlated determine the optimal limits of nanofiller content required for improving the performance of nanocomposites. The rheological flocculation threshold of φ* = 0.5% is found as a critical concentration for the formation of a flocculated type of structure in the dispersions. It is proposed, that the flocculated structure is responsible for the maximal improvement of nanocomposite mechanical and thermal properties. The MWCNT additive slightly enhances the local dynamics of iPP molecules in the glass transition region and suppresses the global relaxation of the chain segments in the amorphous regions, resulting in a reinforcement effect. The fracture mechanism is discussed and associated with the hierarchy of the flocculated nanocomposite morphology and the bridging of matrix cracks by CNT. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Multiwalled carbon nanotubes (MWCNTs) were synthesized using chemical vapor deposition and poly(trimethylene terephthalate) (PTT)/MWCNT composites with varying amounts of MWCNTs were prepared by melt compounding using DSM micro‐compounder. Morphological characterization by SEM and TEM showed uniform dispersion of MWCNTs in PTT matrix upto 2% (w/w) MWCNT loading. Incorporation of MWCNTs showed no effect on percent crystallinity but affected the crystallite dimensions and increased the crystallization temperature. Dynamic mechanical characterization of composites showed an increase in storage modulus of PTT upon incorporation of MWCNTs above glass transition temperature. The electrical conductivity of PTT/MWCNT composites increased upon incorporation of MWCNTs and percolation threshold concentration was obtained at a loading of MWCNTs in the range of 1–1.5% (w/w). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
将不同质量分数的多壁碳纳米管(MWCNT)与PI通过原位聚合制备了聚酰亚胺(PI)/MWCNT泡沫复合材料,并利用扫描电子显微镜、热失重等仪器对材料性能进行了测试。结果表明,随着MWCNT质量分数的增加,泡孔直径增大,泡沫密度降低,当MWCNT含量超过0.4 %(质量分数,下同)易发生团聚作用,限制了泡沫结构的形成,导致泡沫的形状不规则;在添加0.2 %的MWCNT时,压缩强度、压缩模量、硬度获得了最好的增强效果,并发现增强效果随MWCNT质量分数的增加增强效果呈现先增大后降低的趋势;样品的热稳定性在添加0.05 %质量分数的MWCNT时达到最佳水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号