首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of poor mechanical strength, applications of electrospun polystyrene (PS) fibrous mats are quite limited. The introduction of various concentrations of poly (butylacrylate) adhesives (PBAs) into PS solutions led to the fabrication of point‐bonded electrospun PS fibrous mats with good mechanical strength. The morphologies of PS/PBA fibers with varying PBA content (0?50 wt%) were investigated using scanning electron microscopy (SEM), and the results were compared with pure PS and PBA fibers fabricated with various solvents. SEM images indicated that point‐bonded PS/PBA fibers were uniformly distributed with an average diameter of 1–2 μm. On increasing concentration of PBA up to 20 wt%, porous PS/PBA fibrous mats were obtained. However, solid films were formed at very high concentrations of PBA. The Young's modulus and tensile strength of PS/PBA fibrous mats increased up to 52.4 and 2.7 MPa, respectively. The resultant enhancement of the mechanical properties of PS fibrous mats on addition of PBA increases the number of potential applications of these materials. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
The role of lactic acid (LA) on the polymer crystallization chain conformation and the surface modification of the electrospun nylon-6 fibers were examined. The effect of different amounts of LA on the polymer crystallization chain conformation of nylon-6 mat was evaluated using XRD, FT-IR and Raman spectroscopy whereas the surface modification of the electrospun mats was examined by FE-SEM, contact angle and mechanical properties measurement. It was found that the transition of meta-stable γ-form into the thermodynamically stable α-form was achieved by increasing the amounts of LA in the blend mixture. The adhesive property of LA was found to be responsible for the transformation from non-bonded to the point-bonded structure of nanofibers in the electrospun nylon-6 mat. The resultant LA/nylon-6 hybrid mat with improved hydrophilicity and mechanical properties may be a potential candidate for tissue scaffold.  相似文献   

3.
Electrospun fibrous mats were formed from linear and highly branched poly(urethane urea)s. The highly branched poly(urethane urea)s were synthesized using an A2+B3 methodology, where the A2 species is an oligomeric soft segment. Since the molecular weight of the A2 oligomer is above the entanglement molecular weight, the highly branched polymers formed electrospun fibers unlike typical hyperbranched polymers that do not entangle. Stress-strain experiments revealed superior elongation for the electrospun fibrous mats. In particular, the highly branched fiber mats did not fail at 1300% elongation, making the electrospun mats promising for potential applications where enhanced tear strength resistance is required.  相似文献   

4.
Non‐isocyanate polyurethanes (NIPU) have rapidly emerged as a sustainable, less toxic, and environmentally friendly alternative to traditional isocyanate‐based thermoplastic polyurethane (TPU) synthesis. TPU is widely used in the medical industry due to its excellent mechanical properties and elasticity. However, little work has been done to synthesize and electrospin NIPU into fibrous mats for biomedical applications. In this work, melt polymerization of a plant oil‐based cyclic carbonate monomer with polyether soft segments and various diamines yielded isocyanate‐free, segmented poly(amide hydroxyurethane)s (PAHUs). Electrospinning of segmented PAHUs afforded ductile, free‐standing fibrous mats with Young's modulus values between 7 and 8 MPa, suitable for tissue scaffold applications. PAHU fiber mats exhibited 3–4 times greater water uptake than the electrospun TPU control, demonstrating potential utility in drug delivery. Fibroblasts adhered to electrospun PAHU fibrous mats with viability values over 90% after 72‐h, validating its biocompatibility. The results highlight the high performance and potential of electrospun isocyanate‐free polyurethanes mats for biomedical application. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46464.  相似文献   

5.
Coaxial electrospinning is a method for producing fibrous mats with optional features, such as antibacterial properties, controllable release, and hydrophobicity based on shell materials. Because these features are important in biomedical applications, in this study, biocompatible hydrophobic polymer (polycaprolactone) and hydrophilic polymer [poly(vinyl alcohol)] with silver nanoparticles loaded in the core solution were coaxially electrospun. The effect of silver addition on the conductivity and viscosity of the solutions, chemical structure of the fiber mats, mechanical properties, porosity, hydrophobicity, water vapor transmission rate (WVTR), silver release, and antibacterial properties were investigated. Fibers with silver exhibited less porosity and a lower WVTR and a greater contact angle than the fibers without silver. Furthermore, the core–shell fibers reduced the burst release of silver and successfully prevented the growth of Escherichia coli and Staphylococcus aureus bacteria. Therefore, it seems that these fibers are suitable for providing electrospun mats with long‐term antibacterial properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44979.  相似文献   

6.
In this work, the electrospinning of polymer solutions was used to produce mats with hydrophobic properties from a series of commercially available biodegradable and biocompatible polymers, such as poly(3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid), poly(DL ‐lactide), polycaprolactone, and poly(L ‐lactide). According to the results, to obtain hydrophobic properties, bead‐like morphologies were the most adequate. For obtaining this type of morphology, the polymer concentration of the electrospun solution had to be sufficiently low, although below a limit concentration it was not possible to obtain hydrophobic surfaces. The results also showed that the crystallinity of the materials may influence the final hydrophobic properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Electrospinning of a biodegradable polymer blend of poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) is reported for the first time. Effects of several solution parameters on electrospinning are explored, including types of single and binary solvents, binary solvent mixing ratio, polymer blend concentration, polymer blending ratio, and loading content of tetrabutyl titanate as a compatibilizer. An electrospinnability–solubility map of the PLA/PBAT blend is firstly developed for the facile selection of a suitable binary solvent system, thus simplifying the laborious, time‐consuming, trial‐and‐error process. A particular binary solvent system derived from good and non‐solvent serves as the most suitable medium for the successful preparation of homogeneous bead‐free electrospun PLA/PBAT nanofibers. It is revealed that the compatibilizer acts not only as a diameter size tuner for the PLA/PBAT fibers but also as a mechanical property enhancer for the immiscible PLA/PBAT electrospun mats. Moreover, the antibacterial activity of the drug‐loaded PLA/PBAT fibrous mats suggests their potential application as antibiotic‐carrier mats. Preparation of the composite mats comprising bead‐free fibers with an average size at sub‐micrometer scale is also demonstrated, additionally promoting the possibility of using the PLA/PBAT‐based electrospun mats as a matrix of various additives for a wide range of applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46486.  相似文献   

8.
Fabricating fibrous electrospun scaffolds with controllable fiber‐arrangement have gained an increasing attention in the field of tissue engineering. In this study, the composite patterned D,L ‐poly(lactic acid)/poly(ε‐caprolactone) (PDLLA/PCL) scaffolds were fabricated via electrospinning for the first time, and the order degree and contractibility of patterned composite scaffolds with different PDLLA/PCL ratios were further investigated. The results showed that the order degree of the pattern and in vitro shrinkage behaviors of PDLLA/PCL electrospun mats could be finely tuned by controlling blending ratios. The PDLLA/PCL electrospun mats with the ratio 50/50 showed the most balanced properties with controllable pattern structure and appropriate dimensional stability, and they might be a suitable candidate for tissue engineering application. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

10.
The electrospinning of a polymer melt is an interesting process for medical applications because it eliminates the cytotoxic effects of solvents in the electrospinning solution. Wound dressings made from thermoplastic polyurethane (TPU), particularly as a porous structured electrospun membrane, are currently the focus of scientific and commercial interest. In this study, we developed a functionalized fibrillar structure as a novel antibacterial wound‐dressing material with the melt‐electrospinning of TPU. The surface of the fibers was modified with poly(ethylene glycol) (PEG) and silver nanoparticles (nAg's) to improve their wettability and antimicrobial properties. TPU was processed into a porous, fibrous network of beadless fibers in the micrometer range (4.89 ± 0.94 μm). The X‐ray photoelectron spectroscopy results and scanning electron microscopy images confirmed the successful incorporation of nAg's onto the surface of the fiber structure. An antibacterial test indicated that the PEG‐modified nAg‐loaded TPU melt‐electrospun structure had excellent antibacterial effects against both a Gram‐positive Staphylococcus aureus strain and Gram‐negative Escherichia coli compared to unmodified and PEG‐modified TPU fiber mats. Moreover, modification with nAg's and PEG increased the water‐absorption ability in comparison to unmodified TPU. The cell viability and proliferation on the unmodified and modified TPU fiber mats were investigated with a mouse fibroblast cell line (L929). The results demonstrate that the PEG‐modified nAg‐loaded TPU mats had no cytotoxic effect on the fibroblast cells. Therefore, the melt‐electrospun TPU fiber mats modified with PEG and nAg have the potential to be used as antibacterial, humidity‐managing wound dressings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40132.  相似文献   

11.
Electrospun fibres and polymer inclusion membranes (PIMs) were prepared from polyvinyl chloride (PVC) and Aliquat 336. Morphological and thermomechanical properties of the electrospun mats differed notably from those of PIMs. The plasticizing effect of Aliquat 336 on electrospun PVC/Aliquat 336 fibres was confirmed by the shifting of the glass transition temperature (Tg). By contrast, Aliquat 336 did not act as a plasticizer in PIMs as Tg was independent of Aliquat 336 concentration. Cadmium extraction to electrospun fibres could occur at a lower Aliquat 336 content (i.e. 6 wt.%) compared with PIMs. At 40 wt.% Aliquat 336 content, both PIMs and electrospun fibrous mats exhibited similar extraction rate.  相似文献   

12.
Due to their low melt viscosity, competitive adhesive properties, and the stimuli‐responsive nature of supramolecular interactions, various supramolecular polymers have recently been investigated as adhesives with on‐demand (de)bonding capability. The adhesive properties of a series of hydrogen‐bonded supramolecular polymer networks based on a telechelic poly(ethylene‐co‐butylene) (PEB) terminated with isophthalic acid (IPA) groups and a series of bifunctional pyridines (Py) are reported herein. These supramolecular polymers microphase segregate into an IPA‐Py rich hard phase and an amorphous low‐glass‐transition PEB phase, and their properties depend on the nature of the pyridine‐carrying monomer. Rheological measurements show that the polymers disassemble into low‐viscosity melts when heated above the melting or glass transition temperature of the hard phase. Lap joints bonded with the polymers display a shear strength of up to 1.3 MPa, and debonding is possible in less than 10 s upon heating or exposure to UV–light; to enable rapid light‐induced (de)bonding, a light–heat converter is introduced. Cyclic bonding/debonding experiments reveal that the shear strength remains unchanged over five cycles and demonstrate that the process is very robust.  相似文献   

13.
N‐(4‐aminophenyl)aniline oxidative polymerization is optimized to produce polyaniline (PANI) free from carcinogenic and/or polluting coproducts. The resulting polymer is electrospun using polymethyl methacrylate (PMMA) as the supporting polymer, with different weight ratios (1:0, 4:1, 3:1, 2:1, 1:1, and 0.5:1 w/w PANI/PMMA). By rinsing with a selective solvent, PMMA is removed while maintaining the fibrous morphology. Ultrathin (65 ± 14 nm) and defect‐free PANI nanofiber mats are obtained for the blend containing a high relative content of PANI (2:1 w/w, namely F2:1). Two different solvents are tested to remove PMMA, namely acetone and isopropanol, the former giving better results, as highlighted by infrared spectroscopy (FTIR). X‐ray diffraction (XRD) demonstrates that the electrospun PANI is amorphous. The thin fiber mats are robust and sterilization both by autoclave and UV irradiation can be carried out. UV irradiation is preferred since no modification of the fibrous morphology is detectable. In vitro biocompatibility of the electrospun F2:1 fibers has been evaluated with SH‐SY5Y neuronal‐like cells. Indirect cytocompatibility tests show that no cytotoxic leachable is released by the electrospun mats at both short and longer times, while direct cytocompatibility investigations indicate that only F2:1 fibers washed in isopropanol do not reduce cell proliferation rate with respect to controls on tissue culture plates. Globally, these results suggest that the proposed electrospun nanostructures are promising materials for neuronal tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43885.  相似文献   

14.
Dendritic‐linear‐dendritic (DLD) hybrids are highly functional materials combining the properties of linear and dendritic polymers. Attempts to electrospin DLD polymers composed of hyperbranched dendritic blocks of 2,2‐bis(hydroxymethyl) propionic acid on a linear poly(ethylene glycol) core proved unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co‐electrospun polymer and the solvent systems used for the preparation of the electrospinning solutions exerted a significant effect on the diameter and morphology of the electrospun fibers. It is worth‐noting that aqueous solutions of the DLD polymers and only 1% (w/v) poly(ethylene oxide) resulted in the production of smoother and thinner nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45949.  相似文献   

15.
Newly proposed polymer electrolyte membranes (PEMs) composed of an electrospun poly(vinylidene fluoride) (PVDF) fibrous mat embedded in a poly(4‐vinylpyridine) (P4VP) matrix were successfully fabricated in order to improve the mechanical and dimensional stabilities and ionic conductivity of membranes in lithium rechargeable batteries. Fourier transform infrared spectroscopic analysis showed that as a result of the use of a high voltage during electrospinning the crystalline structure of PVDF changed partially from α‐phase to β‐phase. Energy‐dispersive X‐ray spectroscopy confirmed the existence of crosslinked P4VP in the PVDF fibrous mat. The electrolyte uptakes of PVDF and PVDF/P4VP composite mats were higher than that of PVDF cast film. The tensile properties of PVDF/P4VP composite mat were considerably improved compared to those of the pristine PVDF fibrous mat under both dry and wet (soaked with electrolyte) conditions. In addition, the mechanical and dimensional stabilities of the PVDF/P4VP composite PEM were further enhanced due to crosslinking between the P4VP chains. Furthermore, the PVDF/P4VP composite PEM exhibited an ionic conductivity that was an order of magnitude higher than that of traditional PVDF film. © 2012 Society of Chemical Industry  相似文献   

16.
Electrospinning is an effective technology for the fabrication of ultrafine fibers, which can be the basic component of a tissue engineering scaffold. In tissue engineering, because cells seeded on fibrous scaffolds with varying fiber diameters and morphologies exhibit different responses, it is critical to control these characteristics of electrospun fibers. The diameter and morphology of electrospun fibers can be influenced by many processing parameters (e.g., electrospinning voltage, needle inner diameter, solution feeding rate, rotational speed of the fiber‐collecting cylinder, and working distance) and solution properties (polymer solution concentration and conductivity). In this study, a factorial design approach was used to systematically investigate the degree of influence of each of these parameters on fiber diameter, degree of fiber alignment, and their possible synergetic effects, using a natural biodegradable polymer, poly(hydroxybutyrate‐co‐hydroxyvalerate), for the electrospinning experiments. It was found that the solution concentration invoked the highest main effect on fiber diameter, whereas both rotational speed of the fiber‐collecting cylinder and addition of a conductivity‐enhancing salt could significantly affect the degree of fiber alignment. By carefully controlling the electrospinning parameters and solution properties, fibrous scaffolds of desired characteristics could be made to meet the requirements of different tissue engineering applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Electrospun nanofibers are promising candidates in the nanotechnological applications due to the advantages of the nanofibrous morphology. Therefore, many attempts were reported to modify the electrospun mats to gain more beneficial properties. In the present study, we are introducing a strategy to synthesize electrospun polymeric nanofiber mats containing spider-net binding the main nanofibers. Addition with long stirring time of a metallic salt having tendency to ionize rather than formation of sol–gel in the host polymer solution reveals to synthesize a spider-net within the electrospun nanofibers of the utilized polymer. Nylon6, polyurethane and poly(vinyl alcohol) have been utilized; NaCl, KBr, CaCl2 and H2PtCl6 have been added to the polymeric solutions. In the case of nylon6 and poly(vinyl alcohol), addition of the inorganic salts resulted in the formation of multi-layers spider-network within the electrospun nanofibers mats. The synthesized spider-nets were almost independent on the nature of the salt; the optimum salt concentration was 1.5 wt%. The metallic acid led to form trivial spider-nets within both of nylon6 and poly(vinyl alcohol) nanofibers. In a case of polyurethane, few spider-nets were formed after salt addition due to the low polarity of the utilized solvents. According to TEM analysis, the synthesized spider-net consisted of joints; the later issued from the main nanofibers at Taylor's cone zone. The spider-net improved the mechanical properties and the wetability of the nylon6 nanofiber mats, accordingly a mat having amphiphilic feature has been prepared.  相似文献   

18.
This article reports the fabrication of water‐stable electrospun mats made from water‐soluble poly(vinyl alcohol) and comprising ultrafine nanofibers for a high surface area to volume ratio as required for the adsorption of crystal violet. Acid‐catalyzed crosslinking is uniquely demonstrated as a facile strategy to improve water stability and, just as importantly, fine‐tune the nanofiber size of the electrospun mats. Amine‐functionalized graphene nanoplatelets are incorporated as an adsorption performance enhancer instead of the more widely reported graphene oxide. The functionalized graphene also facilitates fabrication of the composite electrospun mats by direct mixing of the water‐dispersible graphene with the aqueous polymer solution. The enhanced adsorption performance of the polymer nanocomposite mats is explained in detail at the molecular level, while the adsorption mechanism is supported by adsorption isotherm and related kinetic data. Moreover, the adsorbent mats can be removed from the water after use with the mat integrity still maintained. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46318.  相似文献   

19.
With recent developments in the field of smart textiles, researchers have been working toward fabricating architectures of nanofibers, known as nanoyarns, which mimic the geometry of a conventional yarn. In doing so, one can leverage the unique properties of nanoscale fibers, including high surface‐to‐volume ratio and tunable porosity, for the development of smart garments. In the last 5 years, researchers have produced nanoyarns from a limited number of polymers, including polyacrylonitrile (PAN) and poly(vinylidene fluoride) and its co‐polymers. However, to our knowledge, there has been little research on the solution properties and electrospinning parameters needed to fabricate these higher‐order architectures from nonwoven mats. In this work, a modified electrospinning setup, enclosed in a humidity‐controlled chamber, was developed to fabricate nanoyarns for integration into knitted textiles. We fabricated nanofibers and nanoyarns from PAN/DMF solutions and conducted a systematic study to analyze the effect of solution conductivity, viscosity, and electrospinning parameters (applied voltage, collector distance, and humidity) on fiber and yarn fabrication and morphology. Polymer concentration had a significant effect on fibrous cone and yarn fabrication. Low polymer concentrations resulted in poor cone formation, whereas high concentration resulted in dense cones that were difficult to draw into nanoyarns. Overall, the matrix of electrospinning parameters that resulted in the formation of homogenous nanofiber mats was larger than that of nanoyarn formation. Nanoyarn formation required higher polymer concentration and/or applied voltage than nonwoven mat formation. The influence of these parameters on nanoyarn formation and fiber diameter can be used to expand the library of spinnable nanoyarns and optimize their properties for specific applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46404.  相似文献   

20.
In this study, surfaces of multiwalled carbon nanotubes (CNTs) were functionalized with poly(hexafluorobutyl acrylate) (PHFBA) thin film using a rotating-bed plasma-enhanced chemical vapor deposition (PECVD) method without imparting any defects on their surfaces. Polyacrylonitrile (PAN) electrospun polymer fiber mats and composite fiber mats with CNTs and functionalized CNTs (f-CNTs) were prepared. The wettability and chemical and morphological properties of the synthesized fiber mats were investigated, and the dispersion of CNTs and f-CNTs in the polymer matrix was compared according to the contact angle results of electrospun polymer mats. According to the chemical and morphological characterization results, PHFBA-coated CNTs were dispersed more uniformly in the polymer matrix than the uncoated CNTs. The f-CNTs/PAN composite fiber mat exhibits a lower surface energy than the pristine CNTs/PAN fiber mat. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47768.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号