首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the modeling of dislocations and cracks by atomistic/continuum models is described. The methodology combines the extended finite element method with the bridging domain method (BDM). The former is used to model crack surfaces and slip planes in the continuum, whereas the BDM is used to link the atomistic models with the continuum. The BDM is an overlapping domain decomposition method in which the atomistic and continuum energies are blended so that their contributions decay to their boundaries on the overlapping subdomain. Compatibility between the continua and atomistic domains is enforced by a continuous Lagrange multiplier field. The methodology allows for simulations with atomistic resolution near crack fronts and dislocation cores while retaining a continuum model in the remaining part of the domain and so a large reduction in the number of atoms is possible. It is applied to the modeling of cracks and dislocations in graphene sheets. Energies and energy distributions compare very well with direct numerical simulations by strictly atomistic models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with finite element (FE) nodes at their common interface, necessarily requiring that the FE mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modelling to two‐dimensional material domains due to difficulties in simulating full three‐dimensional material processes. In the present work, a new approach to MD–FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and FE nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. Thus, the method lends itself for use with any FEM or MD code. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three‐dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

3.
An adaptive atomistic‐to‐continuum method is presented for modeling the propagation of material defects. This method extends the bridging domain method to allow the atomic domain to dynamically conform to the evolving defect regions during a simulation, without introducing spurious oscillations and without requiring mesh refinement. The atomic domain expands as defects approach the bridging domain method coupling domain by fine graining nearby finite elements into equivalent atomistic subdomains. Additional algorithms coarse grain portions of the atomic domain to the continuum scale, reducing the degrees of freedom, when the atomic displacements in a subdomain can be approximated by FEM or extended FEM elements to within a certain homogeneity tolerance. The extended FEM approximations are created by fitting the broken inter‐atomic bonds of fractured surfaces and dislocation slip planes. Because atomic degrees of freedom are maintained only where needed for each timestep, the solution retains the advantages of multiscale modeling, with a reduced computational cost compared with other multiscale methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The bridging domain method is an overlapping domain decomposition approach for coupling finite element continuum models and molecular mechanics models. In this method, the total energy is decomposed into atomistic and continuum parts by complementary weight functions applied to each part of the energy in the coupling domain. To enforce compatibility, the motions of the coupled atoms are constrained by the continuum displacement field using Lagrange multipliers. For composite lattices, this approach is suboptimal because the internal modes of the lattice are suppressed by the homogeneous continuum displacement field in the coupling region. To overcome this difficulty, we present a relaxed bridging domain method. In this method, the atom set is divided into primary and secondary atoms; the relative motions between them are often called the internal modes. Only the primary atoms are constrained in the coupling region, which succeed in allowing these internal modes to fully relax. Several one‐ and two‐dimensional examples are presented, which demonstrate improved accuracy over the standard bridging domain method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The previously developed bridging cell method for modeling coupled continuum/atomistic systems at finite temperature is used to model fatigue crack growth in single crystal nickel under two crystal orientations at different temperatures. The method is expanded to implement a temperature‐dependent embedded atom method potential for finite temperature simulations avoiding time‐scale restrictions associated with small timesteps. Results for the fatigue simulation were compared with respect to deformation behavior, stress distribution, and crack length. Results showed very different crack growth mechanisms between the two crystal orientations as well as reduced resistance to crack growth with increased temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The quasicontinuum (QC) method is a concurrent scale‐bridging technique that extends atomistic accuracy to significantly larger length scales by reducing the full atomic ensemble to a small set of representative atoms and using interpolation to recover the motion of all lattice sites where full atomistic resolution is not necessary. While traditional QC methods thereby create interfaces between fully resolved and coarse‐grained regions, the recently introduced fully nonlocal QC framework does not fundamentally differentiate between atomistic and coarsened domains. Adding adaptive refinement enables us to tie atomistic resolution to evolving regions of interest such as moving defects. However, model adaptivity is challenging because large particle motion is described based on a reference mesh (even in the atomistic regions). Unlike in the context of, for example, finite element meshes, adaptivity here requires that (i) all vertices lie on a discrete point set (the atomic lattice), (ii) model refinement is performed locally and provides sufficient mesh quality, and (iii) Verlet neighborhood updates in the atomistic domain are performed against a Lagrangian mesh. With the suite of adaptivity tools outlined here, the nonlocal QC method is shown to bridge across scales from atomistics to the continuum in a truly seamless fashion, as illustrated for nanoindentation and void growth. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We present a method to numerically calculate a non‐reflecting boundary condition which is applicable to atomistic, continuum and coupled multiscale atomistic/continuum simulations. The method is based on the assumption that the forces near the domain boundary can be well represented as a linear function of the displacements, and utilizes standard Laplace and Fourier transform techniques to eliminate the unnecessary degrees of freedom. The eliminated degrees of freedom are accounted for in a time‐history kernel that can be calculated for arbitrary crystal lattices and interatomic potentials, or regular finite element meshes using an automated numerical procedure. The new theoretical developments presented in this work allow the application of the method to non‐nearest neighbour atomic interactions; it is also demonstrated that the identical procedure can be used for finite element and mesh‐free simulations. We illustrate the effectiveness of the method on a one‐dimensional model problem, and calculate the time‐history kernel for FCC gold using the embedded atom method (EAM). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We present a novel method to couple molecular dynamics with finite elements at finite temperatures using spatial filters. The mismatch in the dispersion relations between continuum and atomistic models leads, at finite temperature, to unwanted mesh vibrations, which are illustrated using a standard least square coupling formulation. We propose the use of spatial filters with the least square minimization to selectively damp the unwanted mesh vibrations. Then, we extend the idea of selective damping of wavelength modes to couple atomistic and continuum models at finite temperatures. The restitution force from the generalized Langevin equation is modified to perform a two‐way thermal coupling between the two models. Three different numerical examples are shown to validate the proposed coupling formulation in two‐dimensional space. Finally, the method is applied to a high‐speed impact simulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, a novel approach is presented for the concurrent coupling of continuum–atomistic model in the nano-mechanical behavior of atomic structures. The study is focused on the static concurrent multi-scale simulation, which is able to effectively capture the surface effects intrinsic in the molecular mechanics modeling. The Hamiltonian approach is applied to combine the continuum and molecular models with the same weight in the overlapping domain. A Lagrange-multiplier method is employed over the overlapping domain for coupling the continuum nodal displacement with the atomic lattice deformation. A multiple-step algorithm is developed to decouple the solution process in the atomic and continuum domains. The mass and stiffness matrices of continuum domain are computed based on the linear bridging map of the atomic lattice displacement, laid underneath the continuum grid to the element displacements. Numerical simulation results present that the stress and displacement contours of the presented coupling method are in good agreement with those obtained from the molecular mechanics simulation.  相似文献   

10.
A computational library for multiscale modeling of material failure   总被引:1,自引:1,他引:0  
We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the continuum level is modeled by the extended finite element method (XFEM). Using several novel or state of the art methods, the piece software handles semi-concurrent multiscale methods as well as concurrent multiscale methods for fracture, coupling two continuum domains or atomistic domains to continuum domains, respectively. The efficiency of our open-source software is shown through several simulations including a 3D crack modeling in clay nanocomposites, a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM coupling for dynamic crack propagation.  相似文献   

11.
The formulation and finite element implementation of a finite deformation continuum theory for the mechanics of crystalline sheets is described. This theory generalizes standard crystal elasticity to curved monolayer lattices by means of the exponential Cauchy–Born rule. The constitutive model for a two‐dimensional continuum deforming in three dimensions (a surface) is written explicitly in terms of the underlying atomistic model. The resulting hyper‐elastic potential depends on the stretch and the curvature of the surface, as well as on internal elastic variables describing the rearrangements of the crystal within the unit cell. Coarse grained calculations of carbon nanotubes (CNTs) are performed by discretizing this continuum mechanics theory by finite elements. A smooth discrete representation of the surface is required, and subdivision finite elements, proposed for thin‐shell analysis, are used. A detailed set of numerical experiments, in which the continuum/finite element solutions are compared to the corresponding full atomistic calculations of CNTs, involving very large deformations and geometric instabilities, demonstrates the accuracy of the proposed approach. Simulations for large multi‐million systems illustrate the computational savings which can be achieved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A multiscale method is presented which couples a molecular dynamics approach for describing fracture at the crack tip with an extended finite element method for discretizing the remainder of the domain. After recalling the basic equations of molecular dynamics and continuum mechanics, the discretization is discussed for the continuum subdomain where the partition‐of‐unity property of finite element shape functions is used, since in this fashion the crack in the wake of its tip is naturally modelled as a traction‐free discontinuity. Next, the zonal coupling method between the atomistic and continuum models is recapitulated. Finally, it is discussed how the stress has been computed in the atomic subdomain, and a two‐dimensional computation is presented of dynamic fracture using the coupled model. The result shows multiple branching, which is reminiscent of recent results from simulations on dynamic fracture using cohesive‐zone models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A sequential multi‐scale homogenization method combined with molecular dynamics (MD) simulation is developed for the mechanical characterization of nanoparticulate composites. In order to characterize the particle‐size effect of nanocomposites, the effective interface, which has been adopted in continuum micromechanics approaches, is considered as the characteristic phase. Owing to the existence of the interface and the size‐dependent elastic modulus that is observed from MD simulations, an analysis of the mechanical properties of nanocomposites with continuum micromechanics requires careful consideration of the particle‐concentration effect. Therefore, this study focuses on hierarchical information transfer from the molecular model to the continuum model through the homogenization method in lieu of an analytical micromechanics bridging method. Using the present multi‐scale homogenization method, the elastic properties of the effective interface are numerically evaluated and compared with the analytically obtained micromechanics solutions. In addition, the overall elastic modulus of nanocomposites is obtained from the present model and compared with the results of MD simulation, the micromechanics bridging model, and finite‐element analysis (FEA). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This contribution aims at a systematic investigation of staggered solution schemes for the computation of coupled domains having different resolutions in space, a problem frequently arising in multi-scale modeling of materials. To couple a standard finite element domain with a high resolution atomistic or coarse-grained, i.e. particle-based domain, a so-called bridging domain is considered. In this handshake region a total energy, which is the sum of the weighted energies of both domains, needs to be formulated. Interactions in the particle domain are modeled by potential functions, e.g. a harmonic potential in the simplest case or the Lennard-Jones potential to consider also anharmonic interactions between the particles. The main goal is to separate the computation of finite element and particle domains as much as possible, amongst others to calculate the different domains on several CPUs. In the present work, the governing equations of the coupling method are presented. The energy functions of continuum, particle domain and bridging domain are recapitulated and the coupling constraint is set up. For the sake of simplicity, these relations are reformulated for the case of a one dimensional system. On the one hand, this system is computed monolithically without any separation of domains. On the other hand, various staggered solution schemes are derived systematically. The relevant equations of each scheme are given in detail together with the sequent iteration steps. All staggered schemes are investigated qualitatively, e.g. by their convergence behavior, as well as quantitatively by comparing the staggered solutions with the monolithic solution.  相似文献   

15.
16.
Many atomistic–continuum coupling techniques employ an overlapping subdomain to suppress spurious wave reflections. In this paper, we propose the imposition of a new damping condition on the overlapping subdomain to enhance the capability of such methods in eliminating spurious wave reflections. In this technique, the total displacements of the atoms in the overlapping subdomain are decomposed into fine and coarse scales. The fine scale displacements represent the oscillations which cannot be resolved by the continuum mesh and must be eliminated to avoid the artificial reflections. This is achieved by modifying the equations of motion of the fine scale displacements to include a damping term. The flexibility of the proposed technique is verified by applying it to the bridging scale method and bridging domain method. Numerical simulations of one- and two-dimensional problems demonstrate the effectiveness of the technique in enhancing the elimination of the spurious wave reflections in coupled atomistic–continuum techniques.  相似文献   

17.
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics—finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction–displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum–atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum–atomistic interface, and continues its propagation in the atomistic environment. This study is a step toward relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.  相似文献   

18.
We introduce a framework that adapts local and non-local continuum models to simulate static fracture problems. Non-local models based on the peridynamic theory are promising for the simulation of fracture, as they allow discontinuities in the displacement field. However, they remain computationally expensive. As an alternative, we develop an adaptive coupling technique based on the morphing method to restrict the non-local model adaptively during the evolution of the fracture. The rest of the structure is described by local continuum mechanics. We conduct all simulations in three dimensions, using the relevant discretization scheme in each domain, i.e., the discontinuous Galerkin finite element method in the peridynamic domain and the continuous finite element method in the local continuum mechanics domain.  相似文献   

19.
We present a domain-reduction approach for the simulation of one-dimensional nanocrystalline structures. In this approach, the domain of interest is partitioned into coarse and fine scale regions and the coupling between the two is implemented through a bridging-scale interfacial boundary condition. The atomistic simulation is used in the fine scale region, while the discrete Fourier transform is applied to the coarse scale region to yield a compact Green’s function formulation that represents the effects of the coarse scale domain upon the fine/coarse scale interface. This approach facilitates the simulations for the fine scale, without the requirement to simulate the entire coarse scale domain. After the illustration in a simple 1D problem and comparison with analytical solutions, the proposed method is then implemented for carbon nanotube structures. The robustness of the proposed multiscale method is demonstrated after comparison and verification of our results with benchmark results from fully atomistic simulations.  相似文献   

20.
This paper investigates the application of a recently proposed higher‐order Cauchy–Born rule in the continuum simulation and multiscale analysis of carbon nanotubes (CNTs). A mesh‐free computational framework is developed to implement the numerical computation of the hyper‐elastic constitutive model that is derived from the higher‐order Cauchy–Born rule. The numerical computation reveals that the buckling pattern of a single‐walled carbon nanotube (SWCNT) can be accurately displayed by taking into consideration the second‐order deformation gradient, and fewer mesh‐free nodes can provide a good simulation of homogeneous deformation. The bridging domain method is employed to couple the developed mesh‐free method and the atomistic simulation. The coupling method is used to simulate the bending buckling of an SWCNT and the tensile failure of an SWCNT with a single‐atom vacancy defect, and good computational results are obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号