首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
This study describes a computational framework for three-dimensional finite strain and finite curvature micropolar hyperelasticity. The model is based on the non-linear kinematic setting and features an appropriate hyperelastic material law which is derived within the thermodynamically consistent framework. The material tangent operator is obtained by consistent linearization. An implicit finite element method with a Newton-Raphson procedure is employed for the computation of the nodal displacements and rotations. A number of numerical examples is presented. The results demonstrate (i) that the methodology is capable of capturing 3D length scale effects in finite deformation, (ii) that it is robust and computationally efficient and (iii) that the proposed micropolar element tangent renders asymptotically quadratic convergence of the Newton-Raphson procedure. It is shown that the classical Neo-Hooke type material behaviour is recovered as a special case within the proposed micropolar setting.  相似文献   

3.
Micropolar theories offer a possibility to model size effects in the constitutive behaviour of materials. Typical feature of such models is that they deal with a microrotation, which is supposed to represent an independent state variable, and its space gradient. As a consequence, the stress tensor is no longer symmetric and couple stresses enter the theory. Accordingly, a micropolar plasticity law exhibiting kinematic hardening effects should account for both, a back‐stress tensor and a back‐couple stress tensor. This has been considered in the micropolar plasticity model developed by Grammenoudis and Tsakmakis. The purpose of the current paper is to specify some constitutive functions in this model, to elucidate the finite element implementation as well as to demonstrate its capabilities in describing size effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
在连续损伤力学和塑性力学框架内,建立一个同时考虑塑性效应和损伤累积导致材料属性退化的复合材料弹塑性损伤本构模型。基于最近点投影回映算法,开发本构模型的应变驱动隐式积分算法以更新应力及与解答相关的状态变量,并推导与所开发算法相应的数值一致性切线刚度矩阵,保证有限元分析采用NewtonRaphson迭代法解答非线性问题的计算效率。采用断裂带模型对已开发的本构模型软化段进行规则化,以减轻有限元分析结果的网格相关性问题。对损伤变量进行粘滞规则化,并推导出相应的粘滞规则化数值一致性切线刚度张量,解决了在有限元隐式计算程序中采用含应变软化段本构关系的数值分析由于计算困难而提前终止的问题。开发包含数值积分算法的用户材料子程序UMAT,并嵌于有限元程序Abaqus v6.14中。通过对力学行为展现显著塑性效应的AS4/3501-6V型开口复合材料层合板的渐进失效分析,验证本文提出的材料本构模型的有效性。结果显示,预测结果与已报道的试验结果吻合良好,并且预测精度高于其他已有弹性损伤模型。表明已建立的弹塑性损伤本构模型能够准确预测力学行为,展现显著塑性效应的复合材料层合板的破坏荷载,为其构件和结构设计提供一种有效的分析方法。  相似文献   

5.
The paper is concerned with the development and verification of a combined elastoplastic damage model for the progressive failure analysis of composite materials and structures. The model accounts for the irreversible strains caused by plasticity effects and material properties degradation due to the damage initiation and development. The strain-driven implicit integration procedure is developed using equations of continuum damage mechanics, plasticity theory and includes the return mapping algorithm. A tangent operator consistent with the integration procedure is derived to ensure a computational efficiency of the Newton–Raphson method in the finite element analysis. The algorithm is implemented in Abaqus as a user-defined subroutine. The efficiency of the constitutive model and computational procedure is demonstrated using the analysis of the progressive failure of composite laminates containing through holes and subjected to in-plane uniaxial tensile loading. It has been shown that the predicted results agree well with the experimental data reported in the literature.  相似文献   

6.
A three-dimensional fully coupled creep elastoplastic damage model at finite strain for isotropic non-linear material is developed. The model is based on the thermodynamics of an irreversible process and the internal state variable theory. A hyperelastic form of stress–strain constitutive relation in conjunction with the multiplicative decomposition of the deformation gradient into elastic and inelastic parts is employed. The pressure-dependent plasticity with strain hardening and the damage model with two damage internal variables are particularly considered. The rounding of stress–strain curves appearing in cycling loading is reproduced by introduction of the creep mechanism into the model. A numerical integration procedure for the coupled constitutive equations with three hierarchical phases is proposed. A consistent tangent matrix with consideration of the fully coupled effects at finite strain is derived. Numerical examples are tested to demonstrate the capability and performance of the present model at large strain.  相似文献   

7.
A large strain plasticity model for implicit finite element analyses   总被引:1,自引:0,他引:1  
The theoretical basis and numerical implementation of a plasticity model suitable for finite strains and rotations are described. The constitutive equations governing J 2 flow theory are formulated using strains-stresses and their rates defined on the unrotated frame of reference. Unlike models based on the classical Jaumann (or corotational) stress rate, the present model predicts physically acceptable responses for homogeneous deformations of exceedingly large magnitude. The associated numerical algorithms accommodate the large strain increments that arise in finite-element formulations employing an implicit solution of the global equilibrium equations. The resulting computational framework divorces the finite rotation effects on strain-stress rates from integration of the rates to update the material response over a load (time) step. Consequently, all of the numerical refinements developed previously for small-strain plasticity (radial return with subincrementation, plane stress modifications, kinematic hardening, consistent tangent operators) are utilized without modification. Details of the numerical algorithms are provided including the necessary transformation matrices and additional techniques required for finite deformations in plane stress. Several numerical examples are presented to illustrate the realistic responses predicted by the model and the robustness of the numerical procedures.  相似文献   

8.
Aim of this paper is to develop a new shape memory alloy (SMA) facet-shell finite element accounting for material and geometric nonlinearities. A corotational formulation is exploited, able to filter out large rigid-body motions from the element transformation. Accordingly, a geometrically linear core-element is employed, along with a SMA constitutive model formulated in the small strain framework. In particular, in accordance with the formulation of the classical thin shell theory, a plane-stress SMA model accounting for the pseudo-elastic as well as the shape memory effect is adopted. The time integration of the evolutive equation is performed developing a step-by-step backward-Euler numerical procedure. A highly efficient implementation of the corotational machinery is used, endowed with a fully consistent tangent stiffness. Applications are carried out for assessing the performances of the developed computational procedure and to investigate on some interesting engineering examples. The numerical results show the effectiveness of the proposed shell element, whose simplicity makes it attractive for the design of new advanced SMA-based devices undergoing significant configuration changes during their operation.  相似文献   

9.
This paper aims at presenting a general consistent numerical formulation able to take into account, in a coupled way, strain rate, thermal and damage effects on the behavior of materials submitted to quasistatic or dynamic loading conditions in a large deformation context. The main features of this algorithmic treatment are as follows:
  • A unified treatment for the analysis and implicit time integration of thermo‐elasto‐viscoplastic constitutive equations including damage that depends on the strain rate for dynamic loading conditions. This formalism enables us to use dynamic thermomechanically coupled damage laws in an implicit framework.
  • An implicit framework developed for time integration of the equations of motion. An efficient staggered solution procedure has been elaborated and implemented so that the inertia and heat conduction effects can be properly treated.
  • An operator split‐based implementation, accompanied by a unified method to analytically evaluate the consistent tangent operator for the (implicit) coupled damage–thermo‐elasto‐viscoplastic problem.
  • The possibility to couple any hardening law, including rate‐dependent models, with any damage model that fits into the present framework.
All the developments have been considered in the framework of an implicit finite element code adapted to large strain problems. The numerical model will be illustrated by several applications issued from the impact and metal‐forming domains. All these physical phenomena have been included into an oriented object finite element code (implemented at LTAS‐MN 2L, University of Liège, Belgium) named Metafor.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a three‐invariant cap plasticity model with an isotropic hardening rule is presented for numerical simulation of powder compaction processes. A general form is developed for single‐cap plasticity which can be compared with some common double‐surface plasticity models proposed for powders in literature. The constitutive elasto‐plastic matrix and its components are derived based on the definition of yield surface, hardening parameter and non‐linear elastic behaviour, as function of relative density of powder. Different aspects of the new single plasticity are illustrated by generating the classical plasticity models as special cases of the proposed model. The procedure for determination of powder parameters is described by fitting the model to reproduce data from triaxial compression and confining pressure experiments. The three‐invariant cap plasticity is performed within the framework of an arbitrary Lagrangian–Eulerian formulation, in order to predict the non‐uniform relative density distribution during large deformation of powder die pressing. In ALE formulation, the reference configuration is used for describing the motion, instead of material configuration in Lagrangian, and spatial configuration in Eulerian formulation. This formulation introduces some convective terms in the finite element equations and consists of two phases. Each time step is analysed according to Lagrangian phase until required convergence is attained. Then, the Eulerian phase is applied to keep mesh configuration regular. Because of relative displacement between mesh and material, all dependent variables such as stress and strain are converted through the Eulerian phase. Finally, the numerical schemes are examined for efficiency and accuracy in the modelling of a rotational flanged component, an automotive component, a conical shaped‐charge liner and a connecting‐rod. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this paper is to develop an elastic–plastic‐damage constitutive law and a tool for simulation of delamination initiation and propagation in fibre metal laminates (FMLs) under low‐cycle fatigue loading regime. In the previous studies, the significance of plasticity in delamination growth and modelling of FMLs was not considered. Hence, cohesive zone law that combines the damage evolution with plasticity is developed. The new fatigue damage model is implemented as user‐written subroutines that links with ansys based on the cohesive finite element method. The cohesive zone model constitutive law has been verified by modelling of the delaminated adhesively bonded aluminium joint under normal and shear loadings and compared with the available results in the literature. The developed procedure and tool have been used for the analyses of DCB and ENF specimens under uniform and variable loadings. The obtained results for progressive damage and delamination and stress–strain curves are discussed in this paper.  相似文献   

12.
The macroscopic behavior of materials is affected by their inner micro‐structure. Elementary considerations based on the arrangement, and the physical and mechanical features of the micro‐structure may lead to the formulation of elastoplastic constitutive laws, involving hardening/softening mechanisms and non‐associative properties. In order to model the non‐linear behavior of micro‐structured materials, the classical theory of time‐independent multisurface plasticity is herein extended to Cosserat continua. The account for plastic relative strains and curvatures is made by means of a robust quadratic‐convergent projection algorithm, specifically formulated for non‐associative and hardening/softening plasticity. Some important limitations of the classical implementation of the algorithm for multisurface plasticity prevent its application for any plastic surfaces and loading conditions. These limitations are addressed in this paper, and a robust solution strategy based on the singular value decomposition technique is proposed. The projection algorithm is then implemented into a finite element formulation for Cosserat continua. A specific finite element is considered, developed for micropolar plates. The element is validated through illustrative examples and applications, showing able performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This work extends a previously developed methodology for computational plasticity at finite strains that is based on the exponential map and logarithmic stretches to the context of isotropic elasto-viscoplastic solids. A particular form of the strain-energy function, given in terms of its principal values is employed. It is noticeable that within the proposed framework, the small strain integration algorithms, and the corresponding consistent tangent operators, automatically extend to the finite strain regime. Central to the effort of this formulation is the derivation of the closed form of a tangent modulus obtained by linearization of incremental non-linear problem. This ensures asymptotically quadratic rates of convergence of the Newton–Raphson procedure in the implicit finite element solution. To illustrate the performance of the presented formulation, several numerical examples, involving failure by strain localization and finite deformations, are given. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
As soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element computation is significantly affected by the element size. Without remedying this effect in the constitutive model one cannot hope for a reliable prediction of the ductile material failure process. In the present paper, a micro‐mechanical damage model coupled to gradient‐dependent plasticity theory is presented and its finite element algorithm is discussed. By incorporating the Laplacian of plastic strain into the damage constitutive relationship, the known mesh‐dependence is overcome and computational results are uniquely correlated with the given material parameters. The implicit C1 shape function is used and can be transformed to arbitrary quadrilateral elements. The introduced intrinsic material length parameter is able to predict size effects in material failure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A crystallographic constitutive model is developed, which accounts for both rate‐sensitive and rate‐insensitive flow. Single‐crystal plasticity and viscoplasticity are the limiting cases of the model, so that it properly reflects the material response over a wide temperature range. A non‐linear dynamic recovery is included to properly describe ratchetting. We provide a robust integration scheme based on generalization of the return‐mapping algorithm and of the procedure for active set search. The implicit integration and consistent tangent are implemented through the UMAT subroutine in the ABAQUS finite element program. The capability of the model to account for both high and low strain rates is demonstrated in numerical examples. Finally, the stability of integration scheme and quadratic convergence of the global Newton–Raphson equilibrium iterations are demonstrated on the example of a notched bar under tension. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The analogy between the static linearly elastic theory of first order micromorphic media and a model of a matrix reinforced with orthogonal interlocking deformable fibres is established. Corresponding interpretations of some of the non-classical stresses are brought to light. Reductions of the constitutive equations are carried out for isotropy and for further reduction to a micropolar material (whereupon the physical interpretation of constitutive coefficients becomes impractical). An 8-node, 4-sided, isoparametric, displacement finite element is developed for plane stress and plane strain. With 4 degrees of freedom at each node. it is capable of modelling the micromorphic material and through a reduction to 3 degrees of freedom it becomes an element of a micropolar medium. Finite element results are obtained for the case of a circular hole in a uniform tension field and agree well with exact results for a micropolar medium. Corresponding results for 2 classes of micromorphic materials are also given.  相似文献   

17.
This study presents an isogeometric framework for incorporating representative volume element–based multiscale models into computational homogenization. First‐order finite deformation homogenization theory is derived within the framework of the method of multiscale virtual power, and Lagrange multipliers are used to illustrate the effects of considering different kinematical constraints. Using a Lagrange multiplier approach in the numerical implementation of the discrete system naturally leads to a consolidated treatment of the commonly employed representative volume element boundary conditions. Implementation of finite deformation computational strain‐driven, stress‐driven, and mixed homogenization is detailed in the context of isogeometric analysis (IGA), and performance is compared to standard finite element analysis. As finite deformations are considered, a numerical multiscale stability analysis procedure is also detailed for use with IGA. Unique implementation aspects that arise when computational homogenization is performed using IGA are discussed, and the developed framework is applied to a complex curved microstructure representing an architectured material.  相似文献   

18.
The aim of the present work is to develop a new finite element model for the finite strain analysis of plate structures constituted of shape memory alloy (SMA) material. A three‐dimensional constitutive model for shape memory alloys able to reproduce the special thermomechanical behavior of SMA characterized by pseudoelasticity and shape memory effects is adopted. The finite strain constitutive model is thermodynamically consistent and is completely formulated in the reference configuration. A two‐dimensional plate theory is proposed based on a tensor element shape function formulation. The displacement field is expressed in terms of increasing powers of the transverse coordinate. The equilibrium statement is formulated on the basis of the virtual displacement principle in a total Lagrangian format. The proposed displacement formulation is particularly suitable for the simple derivation of high‐order finite elements. Numerical applications are performed to assess the efficiency and locking performance of the proposed plate finite element. Some additional numerical examples are carried out to study the accuracy and robustness of the proposed computational technique and its capability of describing the structural response of SMA devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a three‐invariant constitutive framework suitable for the numerical analyses of localization instabilities in granular materials exhibiting unstructured random density. A recently proposed elastoplastic model for sands based on critical state plasticity is enhanced with the third stress invariant to capture the difference in the compressive and extensional yield strengths commonly observed in geomaterials undergoing plastic deformation. The new three‐invariant constitutive model, similar to its two‐invariant predecessor, is capable of accounting for meso‐scale inhomogeneities as well as material and geometric nonlinearities. Details regarding the numerical implementation of the model into a fully nonlinear finite element framework are presented and a closed‐form expression for the consistent tangent operator, whose spectral form is used in the strain localization analyses, is derived. An algorithm based on the spectral form of the so‐called acoustic tensor is proposed to search for the necessary conditions for deformation bands to develop. The aforementioned framework is utilized in a series of boundary‐value problems on dense sand specimens whose density fields are modelled as exponentially distributed unstructured random fields to account for the effect of inhomogeneities at the meso‐scale and the intrinsic uncertainty associated with them. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A mixed finite element for hydro‐dynamic analysis in saturated porous media in the frame of the Biot theory is proposed. Displacements, effective stresses, strains for the solid phase and pressure, pressure gradients, and Darcy velocities for the fluid phase are interpolated as independent variables. The weak form of the governing equations of coupled hydro‐dynamic problems in saturated porous media within the element are given on the basis of the Hu–Washizu three‐field variational principle. In light of the stabilized one point quadrature super‐convergent element developed in solid continuum, the interpolation approximation modes for the primary unknowns and their spatial derivatives of the solid and the fluid phases within the element are assumed independently. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of pressure‐dependent non‐associated plasticity. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elastoplastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is used. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization due to strain softening in poroelastoplastic media subjected to dynamic loading at large strain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号