首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new donor–acceptor types of polymer, poly{2‐(biphenyl‐4‐yl)‐5‐[3,4‐dialkoxy‐5‐(1,3,4‐oxadiazol‐2‐yl)thiophen‐2‐yl]‐1,3,4‐oxadiazole}s, were synthesized starting from 2,2′‐sulfanediyldiacetic acid and diethyl ethanedioate through multi‐step reactions. The polymerization was carried out via the polyhydrazide precursor route. The optical and charge‐transporting properties of the polymers were investigated using UV‐visible and fluorescence emission spectroscopic and cyclic voltammetric studies. The polymers showed bluish‐green fluorescence in solutions. The electrochemical band gaps of the polymers were determined to be 2.16 and 2.22 eV. The nonlinear optical properties of the polymers were investigated at 532 nm using the single‐beam Z‐scan technique with nanosecond laser pulses. The polymers showed strong optical limiting behaviour due to effective three‐photon absorption. The values of the three‐photon absorption coefficients for the polymers were found to be 9 × 10?24 and 17 × 10?24 m3 W?2, which are comparable to those of good optical limiting materials. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
A series of novel aromatic poly(ester‐ether‐imide)s with inherent viscosity values of 0.44–0.74 dL g?1 were prepared by the diphenylchlorophosphate‐activated direct polycondensation of an imide ring‐containing diacid namely 5‐(4‐trimellitimidophenoxy)‐1‐trimellitimido naphthalene ( 1 ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. Owing to comparison of the characterization data, an ester‐containing model compound ( 2 ) was also synthesized by the reaction of 1 with phenol. The model compound 2 and the resulted polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(ester‐ether‐imide)s were also determined. The resulting polymers exhibited an excellent organosolubility in a variety of high polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone. They were soluble even in common less polar organic solvents such as pyridine, m‐cresol, and tetrahydrofuran on heating. Crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resulted polymers exhibited nearly an amorphous nature. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 221 and 245°C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(ester‐ether‐imide)s were found to be over 410°C in nitrogen. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
The 4‐[4′‐(Hydrazinocarbonyl)phenoxy]‐2‐pentadecylbenzohydrazide was polycondensed with aromatic diacid chlorides viz., terephthalic acid chloride (TPC), isophthalic acid chloride (IPC), and a mixture of TPC : IPC (50 : 50 mol %) to obtain polyhydrazides which on subsequent cyclodehydration reaction in the presence of phosphoryl chloride yielded new poly(1,3,4‐oxadiazole)s bearing flexibilizing ether linkages and pentadecyl side chains. Inherent viscosities of polyhydrazides and poly(1,3,4‐oxadiazole)s were in the range 0.53–0.66 dL g?1 and 0.49–0.53 dL g?1, respectively, indicating formation of medium to reasonably high molecular weight polymers. The number average molecular weights (Mn) and polydispersities (Mw/Mn) of poly(1,3,4‐oxadiazole)s were in the range 14,660–21,370 and 2.2–2.5, respectively. Polyhydrazides and poly(1,3,4‐oxadiazole)s were soluble in polar aprotic solvents such as N,N‐dimethylacetamide, 1‐methyl‐2‐pyrrolidinone, and N,N‐dimethylformamide. Furthermore, poly(1,3,4‐oxadiazole)s were also found to be soluble in solvents such as chloroform, dichloromethane, tetrahydrofuran, pyridine, and m‐cresol. Transparent, flexible, and tough films of polyhydrazides and poly(1,3,4‐oxadiazole)s could be cast from N,N‐dimethylacetamide and chloroform solutions, respectively. Both polyhydrazides and poly(1,3,4‐oxadiazole)s were amorphous in nature and formation of layered structure was observed due to packing of pentadecyl chains. A decrease in glass transition temperature was observed both in polyhydrazides (143–166°C) and poly(1,3,4‐oxadiazole)s (90–102°C) which could be ascribed to “internal plasticization” effect of pentadecyl chains. The T10 values, obtained from TG curves, for poly(1,3,4‐oxadiazole)s were in the range of 433–449°C indicating their good thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 124:1281–1289, 2012  相似文献   

4.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

6.
New diimide–dicarboxylic acids, ie 4‐phenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis‐(4‐trimellitimidophenyl)pyridine, were synthesized by the condensation reaction of 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis(4‐aminophenyl)pyridine with trimellitic anhydride in glacial acetic acid or dimethylformamide. The monomers were fully characterized by FT‐IR and NMR spectroscopies, and elemental analyses. A series of novel poly(amide–imide)s with inherent viscosities of 0.68–0.87 dl g?1 was prepared from the two diimide–diacids with various aromatic diamines by direct polycondensation. The poly(amide–imide)s were characterized by FT‐IR and NMR spectroscopies. The λmax data for the resulting poly(amide–imide)s were in the range of 260–292 nm. These polymers exhibited good solubilities in polar aprotic solvents. The 10 % weight loss temperatures are above 485 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

8.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
A new‐type of dicarboxylic acid was synthesized from the reaction of 2,5‐bis(4‐aminobenzylidene)cyclopentanone with trimellitic anhydride in a solution of glacial acetic acid/pyridine (Py) at refluxing temperature. Six novel heat resistance poly(amide‐imide)s (PAIs) with good inherent viscosities were synthesized, from the direct polycondensation reaction of N,N′‐[2,5‐bis(4‐aminobenzylidene)cyclopentanone]bistrimellitimide acid with several aromatic diamines, by two different methods such as direct polycondensation in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (Py) and direct polycondensation in a p‐toluene sulfonyl chloride (tosyl chloride, TsCl)/pyridine (Py)/N,N‐dimethylformamide (DMF) system. All of the above polymers were fully characterized by 1H NMR, FTIR, elemental analysis, inherent viscosity, solubility tests, UV‐vis spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and derivative of thermaogravimetric (DTG). The resulted poly(amide‐imide)s (PAIs) have showed admirable good inherent viscosities, thermal stability, and solubility. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
New aromatic diimide‐dicarboxylic acids having kinked and cranked structures, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2′‐bis(4‐aminophenoxy)biphenyl (1a) and 2,2′‐bis(4‐aminophenoxy)‐1,1′‐binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT‐IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide‐imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58–0.97 dl g?1 were obtained in high yield. The polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(amide‐imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
Our interest in the fabrication of high‐performance polyimides has led to thiourea‐substituted poly(thiourea‐ether‐imide)s (PTEIs) with good retention of thermal properties along with flame retardancy. A new aromatic monomer, 4,4′‐oxydiphenyl‐bis(thiourea) (ODPBT), was efficiently synthesized and polymerized with various dianhydrides (pyromellitic dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride and 4,4′‐(hexafluoroisopropylidene)diphthalic dianhydride) via two‐stage chemical imidization to fabricate a series of PTEIs. The structural characterization of ODPBT and the polymers was carried out using Fourier transform infrared, 1H NMR and 13C NMR spectral techniques along with crystallinity, organosolubility, inherent viscosity and gel permeation chromatographic measurements. PTEIs bearing C?S and ? O? moieties in the backbone demonstrated an amorphous nature and were readily soluble in various amide solvents. The novel polymers had inherent viscosities of 1.16–1.23 dL g?1 and molecular weights of ca 90 783–96 927 g mol?1. Their thermal stability was substantiated via 10% weight loss in the temperature range 516–530 °C under inert atmosphere. The polyimides had glass transition temperatures of 260–265 °C. Incorporation of thiourea functionalities into polymer backbones is demonstrated to be an effective way to enhance their thermal properties and flame retardancy. Thus, ODPBT can be considered as an excellent candidate for use in the synthesis of high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
An imide ring‐performed dicarboxylic acid bearing one hexafluoroisopropylidene and two ether linkages between aromatic rings, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane (II), was prepared from the condensation of 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane and trimellitic anhydride. A novel series of poly(amide‐imide)s having inherent viscosities of 0.72 ∼ 1.86 dL g−1 was prepared by the triphenyl phosphite‐activated polycondensation from the diimide‐diacid (II) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. Several of the resulting polymers were soluble in polar amide solvents, and their solutions could be cast into transparent, thin, flexible films having good tensile properties and high thermal stability. The 10% weight loss temperatures were all above 495°C in air or nitrogen atmosphere, and the glass transition temperatures were in the range of 237°–276°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 823–831, 1999  相似文献   

14.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

15.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
A new class of optically active poly(amide imide)s were synthesized via direct polycondensation reaction of diisocyanates with a chiral diacid monomer. The step‐growth polymerization reactions of monomer bis(p‐amido benzoic acid)‐N‐trimellitylimido‐L‐leucine (BPABTL) (5) as a diacid monomer with 4,4′‐methylene bis(4‐phenylisocyanate) (MDI) (6) was performed under microwave irradiation, solution polymerization under gradual heating and reflux condition in the presence of pyridine (Py), dibuthyltin dilurate (DBTDL), and triethylamine (TEA) as a catalyst and without a catalyst, respectively. The optimized polymerization conditions according to solvent and catalyst for each method were performed with tolylene‐2,4‐diisocyanate (TDI) (7), hexamethylene diisocyanate (HDI) (8), and isophorone diisocyanate (IPDI) (9) to produce optically active poly(amide imide)s by the diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.09–1.10 dL/g. These polymers are optically active, thermally stable, and soluble in amide type solvents. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Some structural characterization and physical properties of this new optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1647–1659, 2004  相似文献   

17.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

18.
2,6‐Bis (4‐aminophenoxy) pyridine was prepared via reaction of 4‐aminophenol with 2,6‐dichloropyridine in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP). This pyridine‐based ether diamine was reacted with two moles of trimellitic anhydride to synthesize related diimide‐diacid (DIDA). A high temperature solution polycondensation reaction of DIDA with different diols in the presence of triethylamine hydrochloride in dichlorobenzene resulted in different poly(ether imide ester)s. The monomer and polymers were fully characterized, and the physical and thermal properties of the polymers were studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 570–576, 2005  相似文献   

19.
A new aromatic diamine, viz., bis‐(4‐aminobenzyl) hydrazide (BABH), which contains preformed hydrazide and methylene linkage, was synthesized starting from α‐tolunitrile. The BABH and intermediates involved in its synthesis were characterized by spectroscopic methods. Novel poly(amide‐hydrazide)s were synthesized by low temperature solution polycondensation of BABH with isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). Furthermore, two series of copoly(amide‐hydrazide)s, based on different mol % of BABH and bis‐(4‐aminophenyl) ether (ODA) with IPC/TPC were also synthesized. Poly(amide‐hydrazide)s and copoly(amide‐hydrazide)s were characterized by inherent viscosity [ηinh], FTIR, solubility, X‐ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polycondensation proceeded smoothly and afforded the polymers with inherent viscosities in the range of 0.18–0.93 dL/g in (NMP + 4% LiCl) at 30°C ± 0.1°C. These polymers dissolved in DMAc, NMP or DMSO containing LiCl. The solubility of copolymers was considerably improved in line with less crystalline nature due to random placement of constituent monomers during the copolymerization. XRD data indicated that poly(amide‐hydrazide)s from BABH alone and IPC/TPC had higher crystallinity than the corresponding copoly(amide‐hydrazide)s derived from a mixture of BABH and bis‐(4‐aminophenyl) ether (ODA). Polymers showed initial weight loss around 160°C which is attributed to the cyclodehydration leading to the formation of corresponding poly(amide‐oxadiazole)s. Copolyamide‐hydrazides showed Tmax between 400 and 540°C which is essentially the decomposition of poly(amide‐oxadiazole)s. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
N‐Trimellitylimido‐L ‐leucine was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐leucine diacid chloride was obtained in a quantitative yield. The reaction of this diacid chloride with p‐aminobenzoic acid was performed in dry tetrahydrofuran, and bis(p‐amidobenzoic acid)‐N‐trimellitylimido‐L ‐leucine (5) was obtained as a novel optically active aromatic imide–amide diacid monomer in a high yield. The direct polycondensation reaction of the monomer imide–amide diacid 5 with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylether, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, and benzidine (4,4′‐diaminobiphenyl) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. The resulting novel poly(amide imide)s (PAIs), with inherent viscosities of 0.22–0.52 dL g?1, were obtained in high yields, were optically active, and had moderate thermal stability. All of the compounds were fully characterized with IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 35–43, 2002; DOI 10.1002/app.10181  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号