首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free‐radical‐initiated copolymerization of 2‐(4‐acetylphenoxy)‐2‐oxoethyl‐2‐methylacrylate (AOEMA) and 2‐(4‐benzoylphenoxy)‐2‐oxoethyl‐2‐methylacrylate (BOEMA) with 2‐[(4‐fluorophenyoxy]‐2‐oxoethyl‐2‐methylacrylate (FPEMA) were carried out in 1,4‐dioxane solution at 65°C using 2,2′‐azobisisobutyronitrile as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR and 1H‐ and 13C‐NMR spectral studies. 1H‐NMR analysis was used to determine the molar fractions of AOEMA, BOEMA, and FPEMA in the copolymers. The reactivity ratios of the monomers were determined by the application of Fineman‐Ross and Kelen‐Tudos methods. The analysis of reactivity ratios revealed that BOEMA and AOEMA are less reactive than FPEMA, and copolymers formed are statistically in nature. The molecular weights (M w and M n) and polydispersity index of the polymers were determined using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of FPEMA in the copolymers. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of FPEMA in the copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
3‐(1‐Cyclohexyl)azetidiniyl methacrylate (CyAMA), a new methacrylate monomer, was synthesized by reaction of the sodium salt of 1‐cyclohexylazetidin‐3‐ol with methacryloyl chloride. The monomer was polymerized at 60 °C in 1,4‐dioxane solution using 2,2′‐ azobisisobutyronitrile (AIBN) as an initiator. CyAMA and poly(CyAMA) were characterized by FTIR and 1H and 13C NMR spectroscopy. The activation energy of the initiation step of the polymerization was estimated from initial rates, and the number average molecular weight of the homopolymer was determined by gel permeation chromatography (GPC). The antibacterial and antifungal effects of the monomer and homopolymer were investigated on various bacteria and fungi. The thermal stability of poly(CyAMA) was investigated by TGA, and its glass transition temperature was determined by DSC as 93 °C. © 2000 Society of Chemical Industry  相似文献   

3.
A novel method has been developed to modify the natural polymer chitosan. The process utilizes a monomer prepared by employing a Morita–Baylis–Hillman (MBH) reaction. Specifically, the vinyl monomer 2‐[hydroxy(pyridin‐3‐yl)methyl]acrylonitrile (HPA) was synthesized using a high‐yielding MBH reaction of acrylonitrile with pyridine‐3‐carboxaldehyde in the presence of 1,4‐diazabicyclo[2.2.2]octane. Conversion of HPA to 2‐cyano‐1‐(pyridin‐3‐yl)allyl acrylate (CPA) was then carried out by reaction of acryloyl chloride. The highly functionalized monomer CPA was grafted onto chitosan through a reaction in 2% acetic acid containing a persulfate and a sulfite (K2S2O8/Na2SO3) as redox promoter. An optimal grafting percentage of 123% is obtained when the grafting process is conducted at 60 °C for 4 h employing a 1:0.5 ratio of K2S2O8 and Na2SO3 at a concentration of 2.5 × 10?3 mol L?1. Chitosan‐graft‐poly[2‐cyano‐1‐(pyridin‐3‐yl)allyl acrylate] graft copolymers, having various grafting percentages, were characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopies, X‐ray diffraction, thermogravimetric analysis and scanning electron microscopy. Finally, the results of studies probing the antimicrobial activities of the polymers against selected microorganisms show that the graft copolymers display higher growth inhibition activities against bacteria and fungi than does chitosan. © 2014 Society of Chemical Industry  相似文献   

4.
A Pt/CeO2–ZrO2–SnO2/SBA‐16 (SBA‐16: Santa Barbara Amorphous No. 16) catalyst was developed for the efficient removal of 1,4‐dioxane. Because the catalyst showed synergistic action between the high catalytic activity of Pt and the high oxygen release and storage abilities of CeO2–ZrO2–SnO2, high catalytic efficiency in the liquid phase was obtained in an air atmosphere without the supply of any strongly oxidizing additives or photoirradiation. After reaction at 80°C for 4 h, the residual percentage of 1,4‐dioxane reached 31%. Furthermore, the Pt/CeO2–ZrO2–SnO2/SBA‐16 catalyst exhibited high reusability and durability and the rate of net decrease in 1,4‐dioxane reached 44% at 80°C.  相似文献   

5.
Polythiophene (PT) based dual responsive water‐soluble graft copolymer (PT‐g‐[poly(methoxyethoxy ethyl methacrylate)‐co‐poly(N,N‐diethylamino ethyl methacrylate)]) (PT‐g‐P(MeO2MA‐co‐DEAEMA)) (PTDE) has been synthesized by random copolymerization of methoxyethoxy ethyl methacrylate (MeO2MA) and N,N‐diethylamino ethyl methacrylate (DEAEMA) at 30 °C on the 2,5‐poly(3‐[1‐ethyl‐2‐(2‐ bromoisobutyrate)] thiophene) (PTI) macroinitiator using the Cu based atom transfer radical polymerization technique. The PTDE graft copolymer was characterized by gel permeation chromatography and 1H NMR techniques and it exhibits thermo‐reversible solubility in water showing a lower critical solution temperature of ca 42 °C in neutral aqueous solution. The PTDE graft copolymer contains a fluorescent PT backbone, and interestingly the system exhibits doubling of fluorescence intensity with rising temperature over the temperature range 41–45 °C at pH 7. The PTDE system therefore acts following the principle of the polymeric AND logic gate and it is also found to be effective in sensing of nitroaromatics, particularly picric acid. The influence of chain hydrophobicity on the logic operation and on the sensing of nitroaromatics is discussed. © 2014 Society of Chemical Industry  相似文献   

6.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

7.
2,5‐ Dichlorophenyl acrylate (DPA)‐co‐glycidyl methacrylate (GMA) polymers having five different compositions were synthesized in 1,4‐dioxane using benzoyl peroxide as a free‐radical initiator at 70 ± 0.5°C. Using 1H‐NMR spectroscopy, the composition of the two monomers in the copolymers was calculated by comparing the integral values of the aromatic and aliphatic proton peaks. The reactivity ratios were calculated by Fineman–Ross (r1 = 0.31 and r2 = 1.08), Kelen–Tudos (r1 = 0.40 and r2 = 1.15), and extended Kelen–Tudos (r1 = 0.39 and r2 = 1.16) methods. The nonlinear error‐in‐variables model was used to compare the reactivity ratios. The copolymers were characterized by 1H and proton decoupled 13C‐NMR spectroscopes. Gel permeation chromatography was performed for estimating the Mw and Mn and Mw/Mn of the poly(DPA) and copolymers (DPA‐co‐GMA: 09 : 91 and 50 : 50). Thermal stability of the homo‐ and copolymers was estimated using TGA [poly(DPA) > DPA‐co‐GMA (50 : 50) > DPA‐co‐GMA (09:91)], while DSC was utilized for determining the glass transition temperature. Tg increased with increased DPA content in the copolymer. The 50 : 50 mol % copolymer was chosen for curing with diethanolamine in chloroform. The cured resins were tested for the adhesive properties on leather at different temperatures (50, 90, 100, and 110°C). The resin cured at 50 °C exhibited a maximum peel strength of 1.6 N/mm, revealing a good adhesive behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1167–1174, 2006  相似文献   

8.
New, thermally stable polyimides and a poly(amide‐imide) containing a 1,3,4‐oxadiazole‐2‐pyridyl pendant group based on 2‐[5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl]pyridine were synthesized. The synthesis and characterization of the model compound 2‐{5‐[(3,5‐bistrimellitimido)phenyl]‐1,3,4‐oxadiazole‐2‐yl}pyridine (DIDA) were also investigated, and DIDA was used in the preparation of the poly(amide‐imide) in an ionic liquid, 1‐butyl‐3‐methylimidazolium bromide, as a polymerization solvent. The polymers were characterized by separating and characterizing the poly(amic acid) intermediates using infrared and elemental analyses. The prepared polymers were soluble in polar and aprotic solvents, such as dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and dimethylacetamide. Thermal behaviour of the polymers was studied using thermogravimetric analysis and differential scanning calorimetry. The inherent viscosities of the polyimide and poly(amide‐imide) solutions were in the range 0.34–0.85 dL g?1 (in concentrated sulfuric acid with a concentration of 0.125 g dL?1 at 25 ± 0.5 °C). The removal of Co(II) from aqueous solutions was performed using one of the polyimides. It was found that this polymer had a maximum adsorption capacity and efficiency at pH = 10.0. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
The thermal behavior of poly(2‐hydroxyethyl methacrylate) [PHEMA] homopolymer and poly(2‐hydroxyethyl methacrylate‐co‐itaconic acid) [P(HEMA/IA)] copolymeric networks synthesized using a radiation‐induced polymerization technique was investigated by differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The glass‐transition temperature (Tg) of the PHEMA homopolymer was found to be 87°C. On the other hand, the Tg of the P(HEMA/IA) networks increased from 88°C to 117°C with an increasing amount of IA in the network system. The thermal degradation reaction mechanism of the P(HEMA/IA) networks was determined to be different from the PHEMA homopolymer, as confirmed by thermogravimetric analysis. It was observed that the initial thermal degradation temperature of these copolymeric networks increased from 271°C to 300°C with IA content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1602–1607, 2007  相似文献   

10.
Catalytic asymmetric conjugate arylation of racemic 6‐substituted cyclohexenones with arylboronic acids was catalyzed by 3 mol % of chiral amidophosphane‐[RhCl(C2H4)]2 in a 10:1 mixture of 1,4‐dioxane and water at 70 °C to afford a nearly 1:1 mixture of trans‐ and cis‐5‐aryl‐2‐substituted cyclohexanones in high enantioselectivity, which was subsequently epimerized with sodium ethoxide in ethanol to give thermodynamically stable trans‐5‐aryl‐2‐substituted cyclohexanones with 99–97 % ee in high two‐step yields.  相似文献   

11.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The oxidative polycondensation reaction conditions of 4‐[(pyridine‐3‐yl‐methylene) amino]phenol (4‐PMAP) were studied using H2O2, atmospheric O2, and NaOCl oxidants in an aqueous alkaline medium between 30°C and 90°C. Synthesized oligo‐4‐[(pyridine‐3‐yl‐methylene) amino] phenol (O‐4‐PMAP) was characterized by 1H‐, 13C NMR, FTIR, UV–vis, size exclusion chromatography (SEC), and elemental analysis techniques. The yield of O‐4‐PMAP was found to be 32% (for H2O2 oxidant), 68% (for atmospheric O2 oxidant), and 82% (for NaOCl oxidant). According to the SEC analysis, the number–average molecular weight, weight–average molecular weight, and polydispersity index values of O‐4‐PMAP was found to be 5767, 6646 g mol?1, and 1.152, respectively, using H2O2, and 4540, 5139 g mol?1, and 1.132, respectively, using atmospheric O2, and 9037, 9235 g mol?1, and 1.022, using NaOCl, respectively. According to TG and DSC analyses, O‐4‐PMAP was more stable than 4‐PMAP against thermal decomposition. The weight loss of O‐4‐PMAP was found to be 94.80% at 1000°C. Also, antimicrobial activities of the oligomer were tested against B. cereus, L. monocytogenes, B. megaterium, B. subtilis, E. coli, Str. thermophilus, M. smegmatis, B. brevis, E. aeroginesa, P. vulgaris, M. luteus, S. aureus, and B. jeoreseens. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3327–3333, 2006  相似文献   

13.
The kinetics of nonisothermal decomposition of (2‐phenyl‐1,3‐dioxolane‐4‐yl) methyl methacrylate (PDMMA), 2‐hydroxyethyl methacrylate (HEMA), and vinyl‐pyrrolidone (VPy) copolymers were investigated by thermogravimetry (TG) and differential thermal analysis (DTA). The data indicated that the major weight loss occurs in the range of 270 to 450°C. The decomposition characteristics showed essentially two regimes and varied depending on the temperature and the copolymer composition. The apparent kinetic parameters of the decompositions were estimated from both TG and DTA data by using the alternative calculation methods. The results suggest that the weight loss rates may be represented, depending on the type of sample, by a reaction model of overall order 1.0 to 1.6, with an activation energy of approximately 65–95 kJ mol?1. The DTA data estimated considerably higher values for the overall activation energies, around 198–240 kJ mol?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1500–1508, 2005  相似文献   

14.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

15.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Three new soluble vinylene‐copolymers F , C, and P that contain 4‐(anthracene‐10‐yl)‐2,6‐diphenylpyridine as common segment and fluorene, carbazole, or phenylene, respectively, as alternating segment were prepared by Heck coupling. The glass transition temperature was high for F and C (110 and 117°C), whereas was lower than 25°C for P . The polymers were stable up to ~ 300°C. They emitted blue–green light with maximum located at wavelength of 456–550 nm, which was of the order F < C < P . The photoluminescence quantum efficiency in THF solution was ~ 30% for F and P and only 5% for C . All three copolymers were used as active layers for polymer light emitting diodes (PLEDs) and organic photovoltaic cells. The double PLEDs with configuration of indium‐tin oxide (ITO)/poly(ethylenedioxythiophene (PEDOT) : poly(styrenesulfonate)(PSS)/Copolymer F , C , or P /TPBI(1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene)/Ca/Al were fabricated. Copolymer P emitted green light with maximum brightness of 28 cd/m2 and a current yield of 0.85 cd/A. Organic photovoltaics with the configuration of ITO/PEDOT : PSS/Copolymer and [6,6]‐phenyl‐C61‐butyric acid methyl ester blend (1 : 1) /Ca/Al were also fabricated. Copolymer P showed the highest power conversion efficiency of 0.034%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

18.
The energetic material 3‐(4‐aminofurazan‐3‐yl)‐4‐(4‐nitrofurazan‐3‐yl)furazan (ANTF) with low melting‐point was synthesized by means of an improved oxidation reaction from 3,4‐bis(4′‐aminofurazano‐3′‐yl)furazan. The structure of ANTF was confirmed by 13C NMR spectroscopy, mass spectrometry, and the crystal structure was determined by X‐ray diffraction. ANTF crystallized in monoclinic system P21/c, with a crystal density of 1.785 g cm−3 and crystal parameters a=6.6226(9) Å, b=26.294(2) Å, c=6.5394(8) Å, β=119.545(17)°, V=0.9907(2) nm3, Z=4, μ=0.157 mm−1, F(000)=536. The thermal stability and non‐isothermal kinetics of ANTF were studied by differential scanning calorimetry (DSC) with heating rates of 2.5, 5, 10, and 20 K min−1. The apparent activation energy (Ea) of ANTF calculated by Kissinger's equation and Ozawa's equation were 115.9 kJ mol−1 and 112.6 kJ mol−1, respectively, with the pre‐exponential factor lnA=21.7 s−1. ANTF is a potential candidate for the melt‐cast explosive with good thermal stability and detonation performance.  相似文献   

19.
The crosslinking reaction of liquid carboxylated poly(acrylonitrile‐co‐butadiene) [or nitrile rubber (NBR); acrylonitrile = 10 wt %] with dicumyl peroxide (DCPO) was studied in dioxane by means of Fourier transform near‐infrared spectroscopy (FT‐NIR) and electron spin resonance spectroscopy (ESR). Among the three butadiene units (1,2, cis‐1,4, and trans‐1,4 units) of NBR, only the pendant vinyl group of the 1,2 unit showed an absorption at 6110 cm?1 from the FT‐NIR examination of dioxane solutions of NBR, 1‐octene, 3,3‐dimethyl‐1‐butene, trans‐2‐octene, cis‐5‐octen‐1‐ol, poly‐cis‐1,4‐butadiene, and poly‐1,2‐butadiene. The crosslinking reaction was followed in situ in dioxane by the monitoring of the disappearance of the pendant vinyl double bond with FT‐NIR. The initial disappearance rate (R0) of the vinyl group was expressed by R0 = k[DCPO]0.9[NBR]?0.2 (120°C). The overall activation energy of the reaction was calculated to be 20.7 kcal/mol. This unusual rate equation suggests unimolecular termination due to degradative chain transfer and depressed reactivity of the vinyl group caused by crosslinking. ESR study of the reaction mixture revealed that an allyl‐type polymer radical was formed in the reaction, and its concentration increased with time and was then saturated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2095–2101, 2003  相似文献   

20.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号