首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article presents the 4‐bit ultra‐wideband complementary metal‐oxide‐semiconductor (CMOS) attenuator in a standard 0.18‐μm CMOS process. This design adopts switched bridge‐T type topologies for each attenuation bit. Based on insertion losses and input P1‐dB considerations, the circuit performances can be optimized by the proper bit ordering arrangement. Therefore, the bit ordering 0.5‐4‐2‐1 dB is employed in the 4‐bit attenuator. Moreover, series inductors are added between each bit to further improve the input and output return losses. Measured results demonstrate that the attenuation range of the circuit is 7.5 dB with 0.5 dB step and the root‐mean‐square (RMS) amplitude error is between 0.11 and 0.13 dB from 3.1 to 10.8 GHz. The differences between simulated and measured RMS amplitude errors are less than 0.2 dB, which demonstrates the good agreement and feasibility of the design concept. The measured input P1‐dB is 15 dBm at 5 GHz and the chip area is 1.12 mm2 including all testing pads.  相似文献   

2.
High‐performance, wideband three‐stage power splitters based on substrate integrated waveguide (SIW) are presented. Broadband‐tapered microstrip transitions are used for feeding the SIW structures, which provide 7.5 GHz bandwidth from 21.5 to 29 GHz with return loss below ?20 dB. In addition, various T junctions are tuned, not only to provide broadband performance up to mm‐wave frequencies but also offer low‐phase and amplitude imbalance when cascaded in multistage 1 × 8 splitters. 1 × 4 and 1 × 2‐T junctions are adjusted through parametric analysis to provide wide bandwidth of 3.5 GHz at 24.5 GHz and ?15 dB reflection coefficient. The optimal microstrip transitions and T junctions are used to design a broadband, eight‐way power splitter with 15 dB return loss from 23.0 to 26.4 GHz and phase and amplitude imbalance of ±2.5° and ±0.8° dB, respectively. Furthermore, optimum positions of all inductive posts in terms of guided wavelength are also provided for assisting the direct design of mm‐wave, high‐performance power splitters.  相似文献   

3.
This article proposes a novel digital predistortion (DPD) implementation method for RF power amplifiers. The new approach adopts only one 1‐bit comparator in the feedback path to observe the in‐phase (I) or the quadrature (Q) component of the error signal between the input and the output signals. To this end, the theoretical derivation of the in‐phase observation based on direct learning architecture (DLA) DPD is first given in this article, by combining the existing 1‐bit method and the low‐cost in‐phase observation. To facilitate the delay estimation and alignment, a modified iterative frequency‐domain delay estimation is presented, which only acquires either I or Q components of the output signal to achieve satisfied delay estimation. Experimental results show that the proposed DPD method decreased the normalized mean square error (NMSE) and the adjacent channel power ratio (ACPR) to less than ?42 and ?51 dB, respectively, which indicates that the proposed DPD system can achieve comparable performance as the existing DPD identification techniques with lower implementation complexity.  相似文献   

4.
在n ̄Rayleigh信道下,研究了使用选择合并( SC)接收的移动无线传感器网络系统的平均符号误码率( ASEP )和信道容量。基于矩生成函数( MGF)方法,推导了系统采用相干检测的相移键控调制( PSK),正交幅度调制( QAM),脉冲幅度调制(PAM)等数字调制方式的ASEP的精确表达式。同时,也得到了系统信道容量的精确表达式。然后对不同条件下的ASEP和信道容量性能做了数值仿真,理论分析结果与仿真结果相吻合,验证了理论分析结果的正确性。仿真结果表明:随着分集支路数的增加,系统的ASEP和信道容量性能得到了很好的改善,当使用QPSK调制,信噪比为16 dB时,分集支路数L=1,系统的误码率是6×10-2,信道容量是4(bit/s)/Hz;分集支路数L=2,系统的误码率是1×10-2,信道容量是5.1(bit/s)/Hz;分集支路数L=3,系统的误码率是2×10-3,信道容量是5.8(bit/s)/Hz。  相似文献   

5.
In this article, we present an efficient technique for the accurate design of wideband substrate integrate waveguide directional couplers. By tapering the coupling section, the bandwidth of substrate integrated waveguide (SIW) directional couplers can be enlarged. Two design aspects are involved in this approach. First, the even‐mode propagation constant in the tapered coupling section is accurately extracted with the help of a numerical thru‐reflect‐line calibration technique. Then, it is fitted into the model of a uniform dielectric‐filled rectangular waveguide and thereafter extrapolated to the operation range of the odd mode. Second, equivalent circuit models of the waveguide bifurcation effects are also presented together with parametric values. Based on the results of extraction, a 90° 3‐dB directional coupler is developed to validate the proposed design approach. To achieve the reverse phasing at two output ports, the prototyped 90° 3‐dB directional coupler is subsequently integrated with a novel broadband fixed phase shifter developed with the SIW technology, of which a systematic synthesis procedure has been proposed in this article. Measured performance of both 90° and 180° 3‐dB couplers confirms the accuracy of our proposed design approach. This kind of wide‐band directional coupler can find applications in wideband power dividing/combining circuits within a single‐layer platform. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

6.
In this article, the performance of a circular crossed‐dipole array (CCDA) for space division multiple access (SDMA) configurations adopting directivity and polarization control is presented. The array consists of 12 dual‐polarized elements uniformly distributed in a circular configuration; each dual‐polarized element (crossed‐dipole) consists of two half‐wave dipoles in a ±45° slant configuration. The modified particle swarm optimization and moment of method (MPSO‐MOM) algorithm is used to calculate the complex weightings of the array elements in a mutual coupling environment for beamforming synthesis. In addition, the performance of the adaptive array using discrete feedings (1‐bit amplitude and 4‐bit phase shifters or only 4‐bit phase shifters) is studied. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

7.
In this article, designing of a low‐profile planar linear graded index metasurface (LGIMS) lens is presented. A wide‐beam steerable high‐gain low‐profile antenna is designed by placing LGIMS over microstrip patch antenna radiator at an optimum height. Direction control of the radiation pattern of the microwave radiator by using amplitude and phase modulated metasurface is achieved. The measured peak gain of 13.50 dBi at an operating frequency of 10.08 GHz with progressively beam steering characteristic and progressive enhanced gain within a large conical region of apex angle 64°. The measured maximum gain tolerance of 2.43 dB with significantly reduced side lobe level is obtained by mechanically moving the ultrathin LGIMS lens along the negative parallel radiator axis. The mechanical movement of LGIMS lens over radiator results in to beam steering up to +32°. A maximum measured gain enhancement of 8.75 dB is achieved. The positive parallel radiator axis movement of LGIMS causes gradual broadside gain enhancement with maximum gain enhancement of 1.5 dB. The measured results are in good agreement with the simulated results.  相似文献   

8.
A novel compact balun‐diplexer applying new interdigital line resonators (ILRs) is presented in this article. It is found that the proposed ILR can not only reduce circuit size and but also realize high common mode rejection in differential mode operation frequency. By properly converting the symmetric four‐port balanced bandpass filter (BPF) to a three‐port device, a balun BPF with high selectivity and compact size are accomplished using ILRs. Then, the balun‐diplexer can be realized by combining two well‐designed balun filters with two 50 Ω transmission lines. The demonstrated balun‐diplexer with operation at 1.8 and 2.45 GHz have been designed, fabricated, and measured. Excellent performances have been observed. Specifically, 0.4 dB in‐band amplitude error, 1.8 in‐band phase error, more than 50 dB selectivity and 45 dB isolation are obtained. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:485–489, 2015.  相似文献   

9.
A new millimeter‐wave antenna structure on a low‐cost, production platform integrated passive device technology is presented. The antenna consists of a 2‐by‐1 array of slot antennas at 60 GHz. An in‐house developed on‐chip antenna measurement setup was used to characterize the fabricated antenna. The measurement results show an antenna gain of more than 5 dBi with a return loss of 18 dB at 60 GHz. The better‐than‐10‐dB impedance bandwidth of the antenna covers the 60‐GHz unlicensed band from 57 to 64 GHz. The 3‐dB beamwidths of the antenna are 105° and 76° at E‐plane and H‐plane at 60 GHz, respectively. The size of the die of the antenna is 2 mm × 4.5 mm. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:155–160, 2014.  相似文献   

10.
This article proposes an asymmetric topology for transmit/receive (T/R) switches and more importantly presents a comparative study of both LC‐tuned and resistive body‐floating techniques for improving the power‐handling capability of the T/R switches in the same 0.18‐μm triple‐well CMOS. It is shown from simulations and measurements that the switches adopting either technique achieve comparable performances. For instance, the switch employing the LC‐tuned body‐floating technique exhibits insertion loss of 1.5 dB, isolation of 23.5 dB, and power‐handling capability of 22.5 dBm at 5.2 GHz, whereas the switch using the resistive body‐floating technique exhibits insertion loss of 1.3 dB, isolation of 24 dB, and power‐handling capability of 22.2 dBm, respectively. Therefore, one can conclude that the asymmetric topology with the resistive body‐floating technique is more suitable for designing T/R switches for wireless local area network applications as it consumes smaller silicon area. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

11.
One means of converting the port conditions of a magic‐tee into those of a 90° hybrid is to introduce external sections of waveguide at the symmetrical H‐plane output ports having the necessary 90° phase difference. The purpose of this article is to describe a number of realizations of such differential phase shifters (DPS), including an exact synthesis procedure not requiring computer optimization. A typical design consists of a capacitively loaded waveguide for one section and an essentially inductive waveguide for the other. The latter is simply a uniform waveguide of reduced width when compared with that of the capacitive section. An example capacitive ridge DPS exhibits a maximum phase error of ±2° over a 20% bandwidth in WR75 waveguide with a return loss of better than 40 dB and an insertion loss <0.06 dB. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

12.
A wideband microstrip reflectarray antenna (RA) is proposed using a novel unit‐cell for X‐band applications. The unit‐cell is composed of a logarithmic toothed microstrip element and two‐variable phase‐delay lines (PDLs) for the required phase compensation in the RA. By adjusting the lengths of the PDLs, a smooth and almost linear phase variations of 627° is achieved at the frequency of 10 GHz. Based on the proposed element, a 144‐element center‐fed RA with dimensions of 216 mm × 216 mm is designed at 10 GHz and simulated using CST software. Then, a fabricated prototype RA is tested to validate the design approach. The maximum measured gain is 25.3 dB at 10.4 GHz, whereas the gain is 24.6 dB with 44.2% aperture efficiency at the design frequency of 10 GHz. Also, the measured gain frequency characteristic shows the 1 and 3‐dB gain bandwidths of 24.8% and 42.3%, respectively, and the measured radiation patterns verify the simulated ones as well.  相似文献   

13.
In this article, a novel wideband metal‐only transmitarray based on 1‐bit polarization rotation element is proposed. First, a novel wideband polarization rotation element is designed, which consists of four metallic layers without any substrate layers. The element can be used to rotate polarization of the transmission wave by 90° with respect to that of the incident wave. The element and its mirror image can provide 0° and 180° phase shifts with 1‐bit phase quantization in the 9.2 to 11.2 GHz band with more than 80% polarization conversion rate. Then, by using the proposed element, a 21 × 21‐element transmitarray with a standard pyramidal horn feed is designed and fabricated. The measured results show that the transmitarray achieves 16.8% 1‐dB gain bandwidth with a peak gain of 21.6 dBi. Its cross‐polarization and side‐lobe levels are below ?20 and ?10 dB, respectively, in the operating band. The measured results agree well with the simulation ones, validating effectiveness of the transmitarray design method.  相似文献   

14.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

15.
神经肌肉疾病评估系统的关键是能同时准确提取幅值和相位信息。利用AD8302的高度集成特性设计了一种幅相测量电路。给出了电路原理图,详细论述了测量频率为50 kHz时,幅相测量电路设计的具体方法。性能分析结果表明,幅值和相位的测量性能与额定值比较接近。在±20 dB范围内,幅值测量精度在±0.5 dB以内;在±90°范围内,相位测量精度在±0.9°以内。  相似文献   

16.
以压控运放AD603、功率运放THS3092、10位串行D/A芯片TLC5615和AVR单片机ATmega128为核心,以液晶屏、键盘为人机接口,通过软件补偿增益误差,设计一种可编程控制电压增益的大功率宽带直流放大器。该放大器可实现0~60dB增益范围内1dB步进可调和DC~10MHz带宽,控制误差不大于3%,50Ω负载上最大不失真输出有效值达到10V。  相似文献   

17.
A simplified miniaturized wideband balun design covering (0.38‐3.5 GHz) is presented. The broadband balun structure occupies a small area of 20.7 mm × 20.8 mm. The balun is designed using low loss double‐sided parallel strip lines and is comprised of a two‐stage Wilkinson divider followed by loading, symmetrically, the two output ports. One port with a phase inverter circuit; while a very similar but non‐inverting circuit is placed in the other port for loading‐balance compensation. To realize the balun's function, different smooth transitions have been employed and were accounted for. The fabricated balun circuit demonstrated phase and amplitude imbalance of less than ±5° and ± 0.4 dB, respectively, over the band.  相似文献   

18.
In this paper, a 180° hybrid consisting of a broadband balun and a T‐junction in‐phase power divider is proposed. The 180° hybrid is intended for operation in the C‐band. The balun resembles a center tapped magnetic transformer where the coils are replaced by broadside‐coupled lines. This new technique allows magnetic couplers to be realized by planar structures at microwave frequencies. The planar balun is broadband, and the size reduction is considerable. The broadside‐coupled lines are on a suspended substrate. The proposed structure can be used in the beam forming networks of the multiple‐beam antennas. It also prevents cross connections in the conventional beam forming networks. The planar balun is analyzed by the signal flow graph method. The scattering parameters of the 180° hybrid are calculated by the multiport connection method. Some design formulas for the construction of the balun are presented. The 3‐dimensional model of the planar 180° hybrid is simulated by a full‐wave simulator. Measurement results of the fabricated hybrid approve the simulation results. The 180° hybrid exhibits a relative bandwidth of 45% centered at 4.5 GHz. In the operating band, the amplitude and phase imbalance of the output ports are <0.6 dB and <10°, respectively.  相似文献   

19.
This article demonstrates novel ideas for mitigation of far‐end as well as near‐end crosstalk in coupled pair microstrip lines (CPMLs) by means of defected microstrip structure (DMS). Simple equations and models for analysis and design of a DMS are presented and extracted. Different configurations of DMS‐CPMLs are introduced, and their performances in crosstalk reduction are compared. Finally, the best configuration for far‐end crosstalk reduction is fabricated and tested. A maximum of 35 dB reduction in far‐end and 38 dB reduction in near‐end crosstalk are achieved. The signal integrity performance of the structure is also verified by eye‐diagrams. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

20.
This article presents a method to design compact rat race couplers with improved bandwidth values. The coupler consists of three coupled‐line sections of different electrical lengths and characteristic impedances. First, design equations are obtained by imposing the coupler conditions using a lossless transmission line model. Input impedance matching, isolation, phase, and amplitude imbalances, all four conditions for both the sum and the difference port excitations are considered for bandwidth calculations. Then, an algorithm is developed to solve for the coupled‐line parameters. Considering the limitations of fabrication, guidelines are provided for selecting the right physical parameters according to bandwidth requirement. As an example, a rat race coupler is fabricated that occupies 10% area of a conventional coupler without compromising the bandwidth values. Measurement results shows that the coupler provides 50% of 15 dB return loss bandwidth, 41.7% of 20 dB isolation bandwidth, 15% of ±5° phase imbalance bandwidth, and 62.5% of ±0.5 dB amplitude imbalance bandwidth which are more than those of a conventional 3λ/2 rat race coupler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号