首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, a series of polymer composites was prepared by in situ polymerization of methylmethacrylate (MMA) as a monomer and sonicated nanographite particles (∼400 nm) as conductive fillers. The concentration of nanographite particles was changed in the step of 0.25 wt% in the monomer and five composites having a filler concentration of 0.25, 0.50, 0.75, 1, and 1.5 wt% respectively were prepared. The composites were characterized for their morphology, thermal, and dielectric behavior. Room temperature dielectric behavior of the composites was studied at six different frequencies of 100 Hz, 1, 10, 100, 500 kHz, and 1 MHz. Temperature‐dependent dielectric properties was studied in the temperature range from 30 to 150°C at the above frequencies. It was interesting to note that at room temperature dielectric constant (ε′) decreased with increasing concentration of nanographite and reached a minimum at a filler concentration of 0.75 wt%. Dielectric relaxation behavior was observed in the temperature versus tan δ curves. The dielectric peak shifted to higher temperatures with increase in frequency and vice‐versa. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
M.T. Ramesan 《Polymer Composites》2014,35(10):1989-1996
Nanocomposites of ethylene vinyl acetate (EVA) containing iron oxide nanoparticles (IONPs) were prepared by open mill‐mixing technique. The effect of loading of IONPs in EVA was characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), transmission electron micrograph (TEM), and dynamic mechanical analysis (DMA). The FTIR spectra ascertain the intermolecular interaction between the polymer and IONPs. TEM and XRD studies revealed the structurally ordered arrangement of nanoparticles within the polymer matrix. DMA showed an increase in storage modulus and lesser damping characteristics of composite with the increase in loading of nanoparticles, whereas these properties decreased significantly with increase in temperature. The glass transition temperature shifted toward higher temperature with the increase in content of IONPs. Magnetic properties of the nanocomposites were investigated using vibrating sample magnetometer at room temperature. The saturation of magnetization was progressively increased with the increase in content of nanoparticles. The electrical conductivity, dielectric constant, and dielectric loss of the composite were found to be increased with the increase in volume fraction of nanoparticles. The polymer–filler interaction was also determined from the swelling studies. POLYM. COMPOS., 35:1989–1996, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
A series of polyimide/titanium carbide (PI/TiC) composites with different TiC contents were prepared using the ultrasonic dispersion and in situ polymerization method. Atomic force microscopy (AFM), X‐ray diffraction (XRD), scanning electron microscope (SEM), mechanical, and electrometer were used to characterize the structure and properties of the obtained composites. The morphological study of composites by AFM and SEM showed that TiC particles had a homogeneous dispersion in polyimide matrix with nanoscale at low filler dosage (≤10% volume content). X‐ray diffractions (XRDs) indicated that the doping of TiC slightly reduced the packing density of polyimide and destructed the aggregation structure of polyimide molecules. Experimental results showed that the obtained PI/TiC composites exhibited appropriate mechanical properties and moderate electric breakdown strength. Dielectric investigation evidenced that the dielectric constant and the dielectric loss of these composites increased with the increase of the volume fraction of TiC particles. The composite with 20 vol% TiC particles showed a highest dielectric constant of 37 while retaining an appropriate dielectric loss of 0.026, as compared with the dielectric constant (3–4) of neat polyimide resin. In addition, the dielectric properties of the composites displayed good stability within a wide range of frequency. The results of this work demonstrate the potential use of a PI/TiC composite film in an embedded capacitor. POLYM. COMPOS., 125–130, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
Resin-matrix composites dispersing low-loss dielectric ceramic filler have received a considerable interest for high-frequency application, because of their good shape flexibility and controllable dielectric properties. In this study, (Ba,Sr)TiO3-type ceramic particles have been synthesized by KCl molten salt method to serve as filler particle for resin-matrix dielectric composite. Dielectric measurement confirmed that the composite fabricated by tape-casting demonstrated two times higher dielectric constant of 50.4 than the other composites fabricated by direct-casting using a metal mold. Pore-size distribution as well as ceramic filler content was strongly correlated with the formation of electrical flux in the composites to enhance dielectric constant.  相似文献   

5.
Eduard A. Stefanescu 《Polymer》2010,51(24):5823-5832
We describe the influence of calcium copper titanate (CCTO), and montmorillonite (MMT) on the thermo-mechanical and dielectric properties of poly(methyl methacrylate) PMMA-based composites prepared by an in-situ, thermally activated, radical polymerization for multifunctional structural capacitor applications. MMT was used for its ability to disperse and suspend the CCTO particles through the generation of viscous monomer slurries. X-ray diffraction (XRD) measurements together with transmission electron microscopy (TEM) analysis revealed that the MMT platelets were present in both intercalated and exfoliated morphologies within the polymer matrix. The filler addition was found to improve the thermal stability and the glass transition temperature of PMMA in the composites. Furthermore, the elastic stiffness and dielectric constant of the resultant composites were observed to increase monotonically with filler loading. By contrast, the dielectric breakdown strength of the composite samples was found to diminish with increasing filler loading.  相似文献   

6.
Dielectric properties of Al–epoxy composites were characterized as a function of composition, frequency, and temperature. The dielectric constant increased smoothly with an increase in the concentration of aluminum. An increase in dielectric constant was also observed with an increase in temperature as well as with a decrease in frequency. In general, dissipation factor values for composites with higher concentrations of aluminum were greater than those with lower volume content of aluminum. Also, the dissipation factor showed an increase both with a decrease in frequency and an increase in temperature. The increase in values of dielectric constant and dissipation factor with an increase in concentration of aluminum was attributed to interfacial polarization. The absence of any discontinuity in the plot of dielectric constant versus composition was ascribed to the absence of continuous aluminum chains in the composition range investigated. The increase in dielectric constant with a rise in temperature was attributed to the segmental mobility of the polymer molecules. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3602–3608, 2003  相似文献   

7.
The possibility of obtaining relatively high thermal conductivity and dielectric constant but low dielectric loss polymeric composites by incorporating the core‐shell‐structured aluminum (Al) particles in a linear low‐density polyethylene (LLDPE) by melt mixing and hot pressing was demonstrated in this study. The morphology, thermal and dielectric properties of the composites were characterized using X‐ray diffractions, thermal analysis, scanning electron microscope, and dielectric analyzer. The Al particle decreases the degree of crystallinity and has no appreciable influence on the melting temperature of LLDPE. The thermal conductivity, dielectric constant and loss factor of the composites increase with an increase in Al content at all the frequencies (1 ~ 106 Hz). The thermal conductivity and dielectric constant of the 70 wt% flaky Al particles filled LLDPE are 1.63 W/mK and 50, much higher than those of the spherical Al reinforced one. Moreover, the surface treatment of Al particles with γ‐Aminopropyltriethoxysilane silane coupler improves the thermal conductivity. The dielectric loss factors of the composites still remain at relatively low levels in the measured frequency range. Further, the dielectric permittivity frequency independence in the measured frequency range was observed due to the nanoscale‐Al‐oxide insulating shell of Al. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
Novel acrylic nanocomposites containing calcium phosphate/layered silicate hybrid nanoparticles have been developed for use in photochemical Rapid Prototyping processes like Structural Light Modulation (SLM) and Stereolithography (SL). When tertiary alkyl amines, protonated with phosphoric acid, were added to an acrylic suspension of calcium bentonite, the cation exchange of Ca2+ rendered bentonite organophilic, caused swelling, intercalation and dispersion of silicate nanoplatelets in the monomer. The simultaneous precipitation of calcium phosphate onto the silicate nanoplatelets accounted for the in-situ formation of hybrid nanoparticles. The uniform dispersions of such hybrid nanoparticles afforded a high degree of shear thinning, reflecting the presence of anisotropic filler particles, and increased photosensitivity in SLM with respect to the unfilled resin. Young’s modulus of green and postcured parts increased by 30% at a filler content of 15 wt.% with respect to that of the unfilled benchmark material. This enhanced stiffness was paralleled by 30% increased fracture toughness. As evidenced by fracture surface analysis using Environmental Electron Microscopy (ESEM) and optical microscopy, the improved energy dissipation at the crack tip correlated with roughness of the fracture surfaces, increasing with increasing filler content. Moreover, the examination of the volumetric polymerization shrinkage and the fabrication of H-shaped diagnostic specimens revealed that the nanocomposites were processed with high accuracy, increasing with increasing filler content. Nanocomposite morphologies, examined by means of Transmission Electron Microscopy (TEM), demonstrated that the large primary bentonite particles with average diameters >10 μm fragmented into much smaller particles with average diameters in the range of 1 μm. According to TEM and Wide Angle X-Ray Scattering (WAXS), such in-situ formed nanoparticles were composed of both stacks of organoclay nanoplatelets and also isolated nanoplatelets typical for fully exfoliated organoclays.  相似文献   

9.
环氧树脂基介电复合材料的制备和性能研究   总被引:1,自引:1,他引:0  
以环氧树脂(EP)为基体树脂、经硅烷偶联剂改性后的压电陶瓷钛酸钡(BaTiO3)为增强填料,采用浇铸法制备了有机/无机介电复合材料。研究了填料用量对复合材料介电性能、力学性能和热性能的影响。实验结果表明,BaTiO3能显著提高材料的介电常数,当w(BaTiO3)=60%时,复合材料的介电常数为23.6,比纯EP的介电常数(4.0)提高了近6倍,而且复合材料的介电常数受频率影响较小,具有较好的频率稳定性;随着BaTiO3含量的增加,材料的弯曲强度和冲击强度都呈先增后减的趋势,最大弯曲强度和冲击强度分别为123.8 MPa和26.3 kJ/m2;材料的热稳定性研究表明,材料的起始热分解温度随着BaTiO3含量的增加而提高,材料的耐热性能得到改善。  相似文献   

10.
Electrical impedance measurements are carried out on high temperature superconducting ceramic Yttrium Barium Copper Oxide (YBCO)–Polystyrene (PS) composite materials, in which superconducting particles are embedded in polystyrene matrix. The results of impedance versus frequency (100 Hz–13 MHz), phase angle versus temperature for volume percentage of superconductor (0–40%) are presented. No marked transition in phase angle is observed when the material goes through the superconducting transition temperature of the filler. The dielectric constant and losses increase with increasing YBCO content. However the increase in losses is modest and the excellent dielectric properties of the composites are not adversely affected. The system conforms to Clausius‐Mossotti equation. Dipole moment of YBCO particles and polarizability of the composites are calculated using the Clausius‐Mossotti approaches. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Polymeric composites based on polyurethane (PU) as the matrix and copper (Cu) particles as the filler were prepared by using solution casting. The effects of micro- and nano-particles size and content on the dielectric and mechanical properties depend upon the interface between metal filler and polymeric matrix. The dispersion of the fillers within the polymeric matrix was investigated by scanning electron microscopy (SEM). The SEM results showed a relatively homogeneous dispersion for the micro-particle size and the existence of the aggregation and poor compatibility for the nano-particle size. Differential scanning calorimetric measurements showed that the glass transition temperature (Tg) in case of micro-particles is quite similar to that of the neat PU, but the increase in Tg was observed when nano-particles were used. The dielectric properties of the composites as a function of the filler concentration and filler size was investigated in the frequency range of 100?Hz–10?kHz, showing an increase in dielectric constant with increasing filler content. This increase was more significant when using the nano-particles. The mechanical properties of the composites were obtained by using a tensile tester (ASTM D412). The tensile modulus generally increased with increasing Cu content, but the extent of increase was lower in case of micro-particles. The tensile strength of composite filled with nano-particle slowly decreased when filler content increased, while there was a significant in case of micro-particle as fillers. In addition, the elongation at break decreased with increasing Cu content, but the effect was more significant when micro-particle were employed. AFM image was used to investigate a topology of the tensile fractured surface, showing the mechanism of failure of the composites.  相似文献   

12.
Silica nanoparticles functionalized with polyvinylpyrrolidone (PVP) were obtained by the grinding/mechanical activation of quartz or nonfunctionalized silica nanoparticles in a stirred media mill in the presence of 1‐vinyl‐2‐pyrrolidone, as proven by Fourier transform infrared spectroscopy. The polymer layer thickness formed on the silica nanoparticles after 8 h of mechanical activation in the absence of polymerization initiators amounted to about 10 nm, as derived from shear rheology. The silica nanoparticles functionalized with the hydrophilic PVP by mechanochemical polymerization reaction were used as fillers for hydrogels based on poly(hydroxyethyl methacrylate) (polyHEMA). The water absorption, release properties, and mechanical properties of the polyHEMA–silica composites were measured as functions of the filler content and particle size of the filler. PolyHEMA samples containing 20 wt % of the functionalized silica particles exhibited a higher maximum water absorption than the unfilled polymer; this showed that the hydrophilic interface between the filler and the matrix improved the water absorption. The release of methylene blue from the polyHEMA–silica composites was governed by diffusion and was almost unaffected by the silica particles. The values for the storage modulus and loss modulus of the polyHEMA–silica composites increased with growing filler content. For constant filler content, the storage modulus increased with decreasing particle diameter of the filler; this showed that the reinforcing effect increased with the interface between the filler particles and the matrix polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Calcium copper titanate (CCTO) has been synthesized by high temperature solid-state reaction from calcium carbonate, copper (II) oxide, and titanium dioxide as the starting materials. The formation and morphology of CCTO were confirmed by X-ray diffraction, Fourier-transformed infrared spectrophotometry, scanning electron microscopy (SEM), and particle size analysis. In order to develop flexible dielectric materials, acrylonitrile-butadiene rubber (NBR)-based composites were prepared with CCTO content varied from 0 to 120 phr (parts per hundred rubber). The cure characteristics of composites were assessed. High-dielectric constant CCTO particles were blended into NBR to make composites with improved dielectric constant. Results showed that the NBR/CCTO composites had a high dielectric constant (10–20) with low dielectric loss (<0.4) and low conductivity (<10−3 μS/cm) at frequencies up to 106 Hz. However, the higher CCTO loadings had agglomeration in the NBR matrix, and thus tensile strength and elongation at break sharply deteriorated due to poor rubber-filler interactions. The results showed lower storage modulus E′ and a reduction in Tg with the incorporation of CCTO in NBR matrix. Moreover, improved thermal stability of the NBR/CCTO composites was achieved. SEM was used to observe the dispersion of CCTO particles in NBR matrix.  相似文献   

14.
It was aimed to investigate how thermal conductivity and stability properties of synthesized thermoplastic elastomers were influenced by zinc oxide (ZnO) additives which differed in size and surface treatment. ZnO particles were prepared by the homogeneous precipitation method by mixing aqueous solutions of hexamethylenetetramine (HMT) and zinc nitrate. The obtained particles were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Poly(vinyl pyrrolidone) (PVP) was used as a modifier to reduce aggregation among the ZnO particles. The composites, prepared by melt compounding method, were characterized in terms of their morphology and thermal properties. Uniformly distributed surface treated particles caused an enhancement in thermal conductivity properties. At 10 wt% ZnO concentration the thermal conductivity of composite reached 1.7 W/mK compared with 0.3 W/mK for the neat polymer. At the same filler loading, ZnO nanoparticles exhibited a greater effect on thermal conductivity compared with submicron sized particles. It was found that the coefficient of thermal expansion of composites decreased at low temperature (55°C) with increasing ZnO content. Thermal gravimetric analysis (TGA) showed that the neat polymer and the composites were resistant up to 340°C without significant mass loss. POLYM. COMPOS., 37:2369–2376, 2016. © 2015 Society of Plastics Engineers  相似文献   

15.
Novel 3‐arm methacrylate‐endcapped biodegradable polyglycolide prepolymer was synthesized and characterized. Injectable and in situ curable composites formulated with the liquid prepolymer and bioabsorbable β‐tricalcium phosphate were prepared. The pastelike composites were cured at room temperature using a redox‐initiation system. The initial compressive strengths (CSs), curing time, exotherm, and degree of conversion of the cured composites were determined. The composites showed initial yield CS ranging from 20.1 to 92.3 MPa, modulus from 0.73 to 5.65GPa, ultimate strength from 119.9 to 310.5 MPa, and toughness from 630 to 3930 N mm. Increasing filler content increased yield strength and modulus but decreased ultimate strength and toughness. Diametral tensile strength test showed the same trend as did CS test. Increasing filler content also increased curing time but decreased exotherm and degree of conversion. During the course of degradation, all the materials showed a significant burst degradation behavior within 24 h, followed by a significant increase in strength between Day 1 and Day 3, and then continuous degradation until no strength was detected. The composites with higher filler content retained their strengths longer but those with lower filler contents lost their strengths in 45 or 60 days. The degradation rate is filler‐content dependent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2977–2984, 2007  相似文献   

16.
Epoxy–boron nitride nanotube (BNNT) composites were prepared using visible light through a radical‐induced cationic polymerization method activated by camphorquinone. The fully cured films showed an enhancement of glass transition temperature in the presence of the filler. Electrical characterization showed a slight dielectric constant decrease with BNNT content. Finally, thermal conductivity measured using nano‐flash analysis showed a linear increase in the thermal conductivity of the materials with increasing BNNT content in the photocurable formulations. © 2017 Society of Chemical Industry  相似文献   

17.
The main aim of this study is to investigate the effect of silver‐doped zinc oxide (Ag‐ZnO) loading on the structural, morphological, thermal and electrical properties, and gas sensing behavior of polypyrrole (PPy)/phenothiazine (PTZ)‐blend nanocomposites. The composites are characterized by FTIR, XRD, SEM, TEM, DSC, TGA, and impedance studies. FTIR spectra exhibit the presence of Ag‐ZnO in the PPy/PTZ blend. XRD analysis shows that the semicrystalline behavior of the polymer blend is greatly enhanced by the addition of Ag‐doped ZnO particles. Uniform dispersion of nanoparticles in the polymer is obtained from SEM analysis. The TEM images confirm the presence of spherically shaped nanoparticles in PPy/PTZ blend with a size of 10–25 nm. The DSC measurement indicates that the glass transition temperature of PPy/PTZ blend was significantly improved in the presence of Ag‐doped ZnO nanoparticles. The thermal decomposition temperature of nanocomposite obtained from TGA shows an increase with increase in the content of Ag‐ZnO particles. The incorporation of Ag‐doped ZnO nanoparticles to PPy/PTZ blend exhibit increase in the AC conductivity and dielectric properties of the nanocomposite, due to the pilling of charges at the extended interface of the composite system. The DC conductivity of the nanocomposite increases with the loading of nanoparticles. The ammonia gas sensing performance of PPy/PTZ/Ag‐ZnO nanocomposite is analyzed, and the result shows that the fabricated blend composite can be used as a promising candidate for the easy access of gas molecules. J. VINYL ADDIT. TECHNOL., 26:187–195, 2020. © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.  相似文献   

18.
This study presents the preparation of poly vinylidene fluoride (PVDF) based polymethyl methacrylate (PMMA), Poly(bis(4-Aminophenoxy)phosphazene)(PPZ) and lithium tantalate (LT) composites films using solution blending process. The fabricated PVDF/PMMA/PPZ/LT composite films were evaluated using Fourier transformed infrared spectroscopy, Scanning electron microscopy, Differential scanning calorimetry and Thermo gravimetric analyses. The changes in microstructure, dielectric, morphological and thermal properties of these films with change in composition of PVDF/PMMA/PPZ/LT have been investigated. The high PMMA content and incorporation of LT favored the PVDF phase transition from ‘α’ to ‘β’ phase as shown by FT-IR analysis. The LT particles were properly dispersed in PVDF/PMMA/PPZ matrix as confirmed by scanning electron micrograph images. The dielectric properties of the PVDF/PMMA/PPZ improved with increasing the concentration of LT. The dielectric constant of the films increased with increase in LT content in the blends. The values of dielectric properties observed were higher at lower frequency at room temperature. The composites having 10, 20, 30 & 40% LT in blend samples showed regular increase in Tons, Tmax and corresponding char yield with increase in the filler content. All the composites demonstrated two steps decomposition due to the interaction of filler with polymers at high temperature leading to oxidative decomposition of polymeric chains.  相似文献   

19.
《Polymer Composites》2017,38(6):1031-1042
The influence of multi‐walled carbon nanotubes (MWCNTs) and conductive carbon black (CCB) on cure, electrical, dielectric, and mechanical properties of epoxidized natural rubber (ENR) composites was investigated. It was found that short MWCNTs (S‐MWCNTs) with low loading significantly affected the cure characteristics in a way similar to high loading of CCB. Moreover, the ENR/S‐MWCNTs composites exhibited high AC conductivity, dielectric constant, and dielectric loss tangent (tan δ ) compared to the ENR/CCB and ENR/L‐MWCNTs (long MWCNTs) composites. In addition, the S‐MWCNTs composites showed the lowest percolation threshold concentration, defined as the lowest loading to form conductive paths in the insulating ENR matrix. This might be attributed to the comparatively high interfacial polarization, with good dispersion and distribution, of the S‐MWCNTs in ENR matrix. These characteristics were confirmed by TEM imaging and by a high bound rubber content, corroborating strong filler–rubber interactions in the ENR/S‐MWCNTs composites. However, the L‐MWCNTs composites showed the lowest electrical and other related properties, despite the highest aspect ratio and specific surface area of this filler. This might be because of the flocculation of nanotubes by mutual entanglement, leading to a poor uneven distribution in the ENR matrix. POLYM. COMPOS., 38:1031–1042, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
A thermally conductive linear low‐density polyethylene (LLDPE) composite with silicon carbide (SiC) as filler was prepared in a heat press molding. The SiC particles distributions were found to be rather uniform in matrix at both low and high filler content due to a powder mixing process employed. Differential scanning calorimeter results indicated that the SiC filler decreases the degree of crystallinity of LLDPE, and has no obvious influence on the melting temperature of LLDPE. Experimental results demonstrated that the LLDPE composites displays a high thermal conductivity of 1.48 Wm?1 K?1 and improved thermal stability at 55 wt % SiC content as compared to pure LLDPE. The surface treatment of SiC particles has a beneficial effect on improving the thermal conductivity. The dielectric constant and loss increased with SiC content, however, they still remained at relatively low levels (<102 Hz); whereas, the composites showed poorer mechanical properties as compared to pure LLDPE. In addition, combined use of small amount of alumina short fiber and SiC gave rise to improved overall properties of LLDPE composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号