首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virgin injection‐molded tensile specimens without any inserted film and four kinds of film insert molded (FIM) tensile specimens were prepared. They were annealed at 80°C to investigate the effect of residual stresses and thermal shrinkage of the inserted film on thermal deformation of tensile specimens. The FIM specimens with the unannealed film were bent after ejection in such a way that the film side was protruded and the warpage was reversed gradually during annealing and the film side was intruded. Warpage of the FIM specimen with the film annealed at 80°C for 20 days was not reversed during annealing. Processing of the FIM specimens have been modeled numerically to predict thermoviscoelastic deformation of the part and to understand the warpage reversal phenomenon (WRP). Nonisothermal three‐dimensional flow analysis was carried out for filling, packing, and cooling stages. The flow analysis results were transported to a finite element stress analysis program for prediction of deformation of the FIM part. The WRP was caused by the combined effect of thermal shrinkage of the inserted film and relaxation of residual stresses in the FIM specimen during annealing. It is expected that this study will contribute towards the improvement of the FIM product quality and prevention of large viscoelastic deformation of the molded part. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Complex automotive parts were produced by film insert molding and the ejected parts were annealed to investigate the viscoelastic deformation. Warpage of the part was predicted by numerical simulation of mold filling, packing, and cooling stages with non‐isothermal three‐dimensional flow analysis. The flow analysis results were transported to a finite element stress analysis program and the stress analysis was performed by using time‐temperature superposition principle to investigate viscoelastic deformation. Predicted residual stresses, viscoelastic deformation, and warpage showed good agreement with experimental results. Thermal shrinkage of the inserted film and relaxation of the residual stress affected the viscoelastic deformation of the part significantly during annealing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
The effects of thermal stress resulting from thermal cooling for diamond like carbon (DLC) films on a rough surface are investigated by a finite element analysis. Two different schemes, interlayer deposition (metallic interlayer, multi-interlayer, grade interlayer) and film thickness increase are proposed to relieve the stress. The results show that the film thickness and coefficient of thermal expansion (CTE) are critical in stress reduction for a single interlayer. The metallic interlayer is effective in stress reduction only if the CTE of the interlayer is between that of the substrate and the film. Grade interlayer can further reduce the stress if the plasticity is graded in the interlayer. The increase of film thickness can also reduce the thermal stress, even though it is not as effective as the interlayer approach.  相似文献   

4.
An operating window, which is bounded by two temperatures and draw ratios, defines the stable and defect‐free stretching region of a polymer film. Physical properties including the coefficient of thermal expansion (CTE), birefringence, and Young's modulus of a recyclable polyimide (PIR) film were measured under stretching conditions. While values of birefringence and Young's modulus increased with increasing stretching stress in the machine direction, the CTE was found to decrease. A semiempirical model for the prediction of birefringence and Young's modulus under stretching conditions was developed, from which the CTE could be estimated from the Young's modulus data. Theoretically evaluated physical properties were found to be in qualitative agreement with the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Elastic moduli and linear coefficients of thermal expansion (CTE) of a random thermotropic liquid crystalline copolyester, oriented in a magnetic field and by mechanical methods were measured in the directions parallel and perpendicular to the orientation direction. The axial elastic modulus of the magnetically oriented film was lower than that of the uniaxially stretched film. The elastic modulus measured in the transverse direction was higher for the magnetically oriented film. In the axial direction, both the mechanically stretched and magnetically oriented films exhibited shrinkage at low temperatures (CTE ≈ -2 · 10?5 K?1) and exhibited expansion at elevated temperatures. In the transverse direction, expansion was observed except for the biaxially stretched film at low temperatures. The magnetically oriented film showed the lowest axial CTE at elevated temperatures.  相似文献   

6.
Abstract

Neck formation and propagation in poly (ethylene terephthalate) (PET) films have been investigated using finite element analysis (FEA). First, the criteria for the occurrence of neck propagation are examined and a unique constitutive law for polymers is proposed. Neck propagation is associated with a steep rise of the tangent modulus in the plastic deformation region. The ability of the specimen to form a neck is determined by the ratio of the yield stress to the tangent modulus immediately after the yield point. Next, the characteristic load–displacement behaviour in neck formation and propagation is investigated using FEA. Finally, numerical results are compared with experimental data. The calculated values agree with experimental data on load–displacement behaviour, especially for the decrease in load immediately after yield. An apparent constitutive law representing the load–displacement behaviour of PET film has been successfully obtained. By comparing the experimental results with numerical predictions of the neck localisation and propagation process, it is shown that the decrease in load is related to the recovery of deformation in the region outside the neck.  相似文献   

7.
Non-stretched polyimide films based on 5,4′-diamino-2-phenyl benzimidazole (DAPBI) show curious thermal expansion properties: the in-plane CTE value of PI film is negative when cured at 350 °C (contract upon heating). However, the value of CTE turns positive when cured at 400 °C. In-plane and out-of-plane CTE of PI films annealed at various temperatures have been measured to study the annealing effect on thermal expansion feature. The in-plane CTE value increases from negative to positive as the raise of the annealing temperatures (Tanneal), while the out-of-plane CTE decreases as a function of Tanneal. Morphologies of PI films change from amorphous to semi-crystalline accompanied with the change of in-plane CTE from negative to positive. Mechanism of the thermal expansion behavior of DAPBI-based PI films is proposed: negative in-plane CTE is generated under the combination of the more preferential thermal expansion in the out-of-plane direction and the amorphous structure when the films are cured at lower temperatures; while thermal expansion in the in-plane and out-of-plane directions are both available for semi-crystallized PI films, affording positive in-plane CTE values.  相似文献   

8.
Three‐dimensional flow and structural analyses were carried out for film insert injection molding to investigate warpage of film insert molded (FIM) parts with respect to variation of film and substrate thickness. Asymmetry of temperature distribution in the thickness direction was increased with increasing film thickness but decreased with increasing substrate thickness. Asymmetry of the in‐mold residual stress distribution in the FIM specimen was generated by the nonuniform temperature distribution, and it was increased with increasing film thickness but reduced with increasing substrate thickness. Warpage of the ejected FIM specimen was determined by relaxation of the asymmetric in‐mold residual stress distribution, and it was increased with increasing film thickness but reduced with increasing substrate thickness. Warpage of FIM specimens annealed at 80°C for 30 min showed complex behavior, and the behavior was understood by using factors such as degree of warpage of the ejected part, thermal shrinkage of the inserted film, and retardation of heat transfer. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
热应力是引起堆石坝混凝土面板非结构性开裂的主要原因之一,热膨胀系数(CTE)与混凝土的热变形和热应力直接相关。碳纳米管(CNTs)具有良好的力学性能和一维纳米材料独有的纳米效应,有望改善面板混凝土的CTE。制备施工配合比基准混凝土(JC)和掺质量分数为0.1%的CNTs的面板混凝土(NC),采用温度-应力试验机(TSTM)测量早龄期混凝土在温度匹配(TMC)模式和恒温模式下的自由应变,计算早龄期混凝土的CTE值,提出面板混凝土时变CTE模型。结果表明,两种面板混凝土的CTE在终凝后快速降低至最小值,最后缓慢增至一个稳定值。CNTs的掺入提高了面板混凝土在终凝附近的CTE值,但能降低混凝土CTE的稳定值。  相似文献   

10.
One of the main problems in thin film transistor liquid crystal displays (TFT-LCD) is a phenomenon called “light leakage”, seriously affecting black–white contrast and color brightness. It occurs due to a thermal shrinkage of the polarizing film in TFT-LCDs, caused by a heat from the backlight unit. A pressure-sensitive adhesive (PSA) used for assembling of the polarizing film to the TFT-LCD panel can relieve the stress and minimize the light leakage. PSAs are designed specifically for a certain size LCDs, and cannot be used for another size LCD because of poorer light leakage. Obviously, there is a certain necessity to develop a universal PSA applicable simultaneously for LCDs with different sizes, such as mobile phones, digital cameras, navigation systems, computer monitors, HDTVs, etc.In this paper, we introduced N-vinyl pyrrolidone as a comonomer to a conventional copolymer of butyl acrylate, acrylic acid, and 2-hydroxy ethyl methacrylate. It resulted in a higher elasticity modulus and a higher shrinkage resistance of the PSA. A significant reduction of the light leakage to some extend was observed at increase of the hardener content for 2.5 and 7 in samples. However, it was accompanied by deterioration of the peel strength below spec requirements. Lowering molecular weight of the polymers from 626,000 to 205,000 Da resulted in excellent light leakage of both small and large specimens. Dynamic mechanical analysis confirmed that zero light leakage was achieved through a synergy of two mechanisms: high modulus, i.e. resistance to thermo-induced shrinkage, and high stress relaxation of lower molecular weight polymers. The results of this work are perspective for creation of a universal PSA for polarizing film in TFT-LCDs of different sizes.  相似文献   

11.
Nanograined PbTiO3 (PT) thick films were deposited on Si, yttria‐stabilized zirconia (YSZ), and Ni substrates using an aerosol deposition (AD) method at room temperature. The AD PT thick films on each different substrate were annealed at 500°C and 700°C for 1 h to increase the crystallinity. The stresses in the PT film were modulated by controlling the difference in the coefficient of thermal expansion (CTE) between the films and substrates during the thermal annealing process. The morphology of the AD PT films was examined from the polycrystalline dense structure (thickness ~8 μm), and the changes in the crystallographic phase, in‐plane stresses, and ferroelectric properties in annealed films were investigated. In‐plane stress analysis showed that the PT films annealed at 500°C and 700°C on each substrate exhibited compressive stress. Owing to the effects of compressive stress in the PT film, the film showed less tetragonality (c/a ratio) and enhanced ferroelectric behaviors. The change in the polarization–electric field (P–E) hysteresis loop of the PT films was explained by the stress induced from CTE mismatch between the films and substrates.  相似文献   

12.
Aramid–multiwalled carbon nanotube (MWCNT) nanocomposites with different CNT loadings were prepared by the solution‐blending technique. Aramid oligomeric chains having reactive amine end‐groups were covalently grafted and wrapped over the surface of acid‐functionalized MWCNTs. The presence of functional groups and surface modification of MWCNTs were studied using Raman, Fourier transform infrared and X‐ray photoelectron spectroscopic and transmission/scanning electron microscopic techniques. Addition of these MWCNTs resulted in a homogeneous dispersion throughout the aramid matrix. Dynamic mechanical thermal analysis showed an increase in the storage modulus and the glass transition temperature involved with α‐relaxations on CNT loading. The coefficient of thermal expansion (CTE) of aramid was reduced on loading with such CNTs. Strong interfacial interactions of the matrix with the surface‐modified CNTs reduced the stress‐transfer problem in the composite material and resulted in higher modulus of 4.26 GPa and a glass transition temperature of 338.5 °C, whereas the CTE was reduced to 101.8 ppm °C?1 on addition of only 2.5 wt% CNTs in the aramid matrix. © 2016 Society of Chemical Industry  相似文献   

13.
Calorimetry, coefficient of thermal expansion (CTE), and tensile modulus were recorded to investigate the effect of thermal cycling on polyphenylene sulfides (PPS) carbon fiber composites. Thermal cycling at higher temperatures increased the degree of crystallinity of PPS, as indicated by increasing heat of melting. CTE measurements during thermal cycling were used to study the anisotropy of the composites in directions parallel and transverse to the fiber orientation. It was noted that increasing crystallinity enhanced the tensile modulus of unidirectional composites, while reducing the tensile modulus of quasi‐isotropic composites. The latter reduction may be due to internal damage or interlaminar slippage associated with the residual thermal stresses caused by thermal mismatch between multiply oriented plies. POLYM. COMPOS., 26:713–716, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Numerical and experimental studies have been conducted on the ejection stage of plastics injection molding process. A numerical approach is proposed to predict the ejection force from the mold‐part constraining and friction forces as the product cools in the mold cavity up to the moment of ejection. The finite element thermoviscoelastic solidification analysis has taken into account the stress and volume relaxation behavior of polymers under the cavity‐constrained condition. The predicted ejection force and its distribution over ejector pins are validated by injection molding experiment of rectangular boxes using a polycarbonate resin. Different cases of the ejector pin layout are evaluated to examine the effect of the number, location and dimension of ejector pins, so as to identify the balanced layout causing minimum stress and deformation to the product. The approach is also applied to another product geometry which shows complex distribution of the mold‐part constraining and friction forces and involves multi‐step operations in the demolding stage.  相似文献   

15.
In the present study, randomly aligned jute fiber/poly(lactic acid) (PLA) and two-directionally aligned jute fabric/PLA green composites with jute (50% by weight) treated with electron beam at different dosages (0, 5, 10, 30, 50, and 100?kGy) were fabricated by compression molding technique and the effect of electron beam treatment on their thermal properties was investigated in terms of thermal expansion, thermal stability, dynamic mechanical thermal property, and heat deflection temperature (HDT). The dynamic storage modulus and HDT of neat PLA were significantly increased by incorporating jute fibers or fabrics into PLA, whereas the coefficient of thermal expansion (CTE) and the damping property were decreased, reflecting the enhancement in the interfacial adhesion between the jute and the PLA by electron beam treatment with an optimal dosage of 10?kGy and the reinforcing effect by jute. The result exhibited that the thermal stability, storage modulus, and HDT of jute/PLA green composites were highest with the electron beam irradiation of jute at 10?kGy and lowest at 100?kGy, whereas the CTE and tan δ were lowest at 10?kGy and highest at 100?kGy. The thermal behavior of random jute/PLA green composites shows a similar tendency to that of 2D jute/PLA counterparts and the influence of electron beam irradiation on the thermal properties studied was consistent with each other. The thermomechanical analysis, dynamic mechanical thermal analysis, thermogravimetric analysis, and HDT results were in agreement with each other, showing a comparable effect of electron beam irradiation on composites thermal characteristics.  相似文献   

16.
The coefficient of thermal expansion (CTE) was measured as a function of oxidation for three commercial fine-grained graphites derived from petroleum cokes and coal tar pitches and fabricated by extrusion, undirectional molding, and isostatic molding. The CTE was observed to vary with the crystallite size and the preferred orientation and to decrease as much as 20% with increasing oxidation. This CTE decrease was attributed to an increase of the accommodation by Mrozowski cracks enlarged by the oxidation process. Effects on thermal shock fracture initiation were examined by estimating changes in the thermal shock resistance parameter, R. It is concluded that in spite of the continuous decrease in CTE, changes in R with oxidation are not continuous for these graphites. The complexity is a consequence of the different extents to which graphite oxidation affects CTE, strength and the Young's elastic modulus.  相似文献   

17.
The important mechanical mechanism for the electrical conduction of anisotropic conductive films (ACFs) is the joint clamping force after the curing and cooling processes of ACFs. In this study, the mechanism of shrinkage and contraction stress and the relationship between these mechanisms and the thermomechanical properties of ACFs were investigated in detail. Both thickness shrinkages and modulus changes of four kinds of ACFs with different thermomechanical properties were experimentally investigated with thermomechanical and dynamic mechanical analysis. Based on the incremental approach to linear elasticity, contraction stresses of ACFs developed along the thickness direction were estimated. Contraction stresses in ACFs were found to be significantly developed by the cooling process from the glass‐transition temperature to room temperature. Moreover, electrical characteristics of ACF contact during the cooling process indicate that the electrical conduction of ACF joint is robustly maintained by substantial contraction stress below Tg. The increasing rate of contraction stresses below Tg was strongly dependent on both thermal expansion coefficient (CTE) and elastic modulus (E) of ACFs. A linear relationship between the experimental increasing rate and E × CTE reveals that the build‐up behavior of contraction stress is closely correlated with the ACF material properties: thermal expansion coefficient, glassy modulus, and Tg. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2634–2641, 2004  相似文献   

18.
The dependence of true stress on the extension ratio of PVC threads has been determined for a wide range of extension rates. Since the polymer subjected to deformation was in the high-elastic state (at temperatures from 90 to 160°), the deformations were predominantly high-elastic. The dependence of true stress on the amount of high-elastic deformation is described by the Mooney-Rivlin equation. Relaxation moduli have been found on the basis of measurements of stress relaxation at constant deformation after various extension ratios were attained at different rates. Within the limits of deformation regimes at which the true stress is an increasing function of extension ratio the relaxation moduli do not depend on extension ratio and rate of extension. This enables one to arrive at a master curve of the relaxation modulus versus relaxation time with the reservation indicated above concerning the increasing character of the dependence of true stress on extension ratio. The relaxation spectrum represented by the high-elasticity plateau has been determined from the relaxation moduli according to the first approximation. The experimental data for a very wide range of deformation regimes and temperatures are presented in the form of an invariant dependence of the ratio of true stress to the rate of deformation on the product of deformation time by extension ratio. The ultimate strength of the specimens frozen rapidly after the attainment of definite extension ratios is determined by the accumulated high-elastic deformation.  相似文献   

19.
The addition of silica nanoparticles (23 nm, 74 nm, and 170 nm) to a lightly crosslinked, model epoxy resin, was studied. The effect of silica nanoparticle content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress (σ), fracture energy (GIC) and fracture toughness (KIC), were investigated. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The experimental results revealed that the addition of silica nanoparticles did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of silica nanoparticle size. As expected, the addition of silica nanoparticles had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing silica nanoparticle content, which can be attributed to the much lower CTE of the silica nanoparticles. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of silica nanoparticles and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of silica nanoparticles, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of silica nanoparticles, matrix void growth, and matrix shear banding, which are credited for the increases in toughness for nanosilica-filled epoxy systems. Shear banding mechanism was the dominant mechanism while the particle debonding and plastic void growth were the minor mechanisms.  相似文献   

20.
An aromatic polyamide-imide (PAI) film was reinforced with a plain cloth of aromatic polyamide fiber (Du Pont, Kevlar 49). The mechanical properties of the composite film were investigated by examination of the temperature dependencies of tensile dynamic mechanical properties, stress relaxation, and tensile stress-strain behaviors. The softening temperature of the composite film was lower than that of a homogeneous PAI film. At a high temperature, Kevlar fibers may act as a thermal conductor and lower the softening point of the PAI composite. The mechanical properties of the composite film at a high temperature are mostly controlled by the PAI matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号