首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new meshfree method for the analysis of elasto‐plastic deformation is presented. The method is based on the proposed first‐order least‐squares formulation for elasto‐plasticity and the moving least‐squares approximation. The least‐squares formulation for classical elasto‐plasticity and its extension to an incrementally objective formulation for finite deformation are proposed. In the formulation, equilibrium equation and flow rule are enforced in least‐squares sense, i.e. their squared residuals are minimized, and hardening law and loading/unloading condition are enforced pointwise at each integration point. The closest point projection method for the integration of rate‐form constitutive equation is inherently involved in the formulation, and thus the radial‐return mapping algorithm is not performed explicitly. The proposed formulation is a mixed‐type method since the residuals are represented in a form of first‐order differential system using displacement and stress components as nodal unknowns. Also the penalty schemes for the enforcement of boundary and frictional contact conditions are devised and the reshaping of nodal supports is introduced to avoid the difficulties due to the severe local deformation near contact interface. The proposed method does not employ structure of extrinsic cells for any purpose. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A continuum‐based shape and configuration design sensitivity analysis (DSA) method for a finite deformation elastoplastic shell structure has been developed. Shell elastoplasticity is treated using the projection method that performs the return mapping on the subspace defined by the zero‐normal stress condition. An incrementally objective integration scheme is used in the context of finite deformation shell analysis, wherein the stress objectivity is preserved for finite rotation increments. The material derivative concept is used to develop a continuum‐based shape and configuration DSA method. Significant computational efficiency is obtained by solving the design sensitivity equation without iteration at each converged load step using the same consistent tangent stiffness matrix. Numerical implementation of the proposed shape and configuration DSA is carried out using the meshfree method. The accuracy and efficiency of the proposed method is illustrated using numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A mathematical programming formulation of strain‐driven path‐following strategies to perform shakedown and limit analysis for perfectly elastoplastic materials in an FEM context is presented. From the optimization point of view, standard arc‐length strain‐driven elastoplastic analyses, recently extended to shakedown, are identified as particular decomposition strategies used to solve a proximal point algorithm applied to the static shakedown theorem that is then solved by means of a convergent sequence of safe states. The mathematical programming approach allows: a direct comparison with other non‐linear programming methods, simpler convergence proofs and duality to be exploited. Owing to the unified approach in terms of total stresses, the strain‐driven algorithms become more effective and less non‐linear with respect to a self‐equilibrated stress formulation and easier to implement in the existing codes performing elastoplastic analysis. The elastic domain is represented avoiding any linearization of the yield function so improving both the accuracy and the performance. Better results are obtained using two different finite elements, one with a good behavior in the elastic range and the other suitable for performing elastoplastic analysis. The proposed formulation is compared with a specialized implementation of the primal–dual interior point method suitable to solve the problems at hand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Over the past two decades, meshfree methods have undergone significant development as a numerical tool to solve partial differential equations (PDEs). In contrast to finite elements, the basis functions in meshfree methods are smooth (nonpolynomial functions), and they do not rely on an underlying mesh structure for their construction. These features render meshfree methods to be particularly appealing for higher‐order PDEs and for large deformation simulations of solid continua. However, a deficiency that still persists in meshfree Galerkin methods is the inaccuracies in numerical integration, which affects the consistency and stability of the method. Several previous contributions have tackled the issue of integration errors with an eye on consistency, but without explicitly ensuring stability. In this paper, we draw on the recently proposed virtual element method, to present a formulation that guarantees both the consistency and stability of the approximate bilinear form. We adopt maximum‐entropy meshfree basis functions, but other meshfree basis functions can also be used within this framework. Numerical results for several two‐dimensional and three‐dimensional elliptic (Poisson and linear elastostatic) boundary‐value problems that demonstrate the effectiveness of the proposed formulation are presented. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A four‐node corotational quadrilateral elastoplastic shell element is presented. The local coordinate system of the element is defined by the two bisectors of the diagonal vectors generated from the four corner nodes and their cross product. This local coordinate system rotates rigidly with the element but does not deform with the element. As a result, the element rigid‐body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, leading to the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing corotational finite‐element formulations, the resulting element tangent stiffness matrix is symmetric owing to the commutativity of the local nodal variables in calculating the second derivative of strains with respect to these variables. For elastoplastic analyses, the Maxwell–Huber–Hencky–von Mises yield criterion is employed, together with the backward‐Euler return‐mapping method, for the evaluation of the elastoplastic stress state; the consistent tangent modulus matrix is derived. To eliminate locking problems, we use the assumed strain method. Several elastic patch tests and elastoplastic plate/shell problems undergoing large deformation are solved to demonstrate the computational efficiency and accuracy of the proposed formulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A new incremental formulation in the time domain for linear, non-ageing viscoelastic materials undergoing mechanical deformation is presented in this work. The formulation is derived from linear differential equations based on a discrete spectrum representation for the creep and relaxation tensors. The incremental constitutive equations are then obtained by finite difference integration. Thus the difficulty of retaining the stress and strain history in computer solutions is avoided. A complete general formulation of linear viscoelastic stress analysis is developed in terms of increments of strains and stresses in order to establish the constitutive stress–strain relationship. The presented method is validated using numerical simulations and reliable results are obtained.  相似文献   

7.
In this work the recently proposed Reduced Enhanced Solid‐Shell (RESS) finite element, based on the enhanced assumed strain (EAS) method and a one‐point quadrature integration scheme, is extended in order to account for large deformation elastoplastic thin‐shell problems. One of the main features of this finite element consists in its minimal number of enhancing parameters (one), sufficient to circumvent the well‐known Poisson and volumetric locking phenomena, leading to a computationally efficient performance when compared to other 3D or solid‐shell enhanced strain elements. Furthermore, the employed numerical integration accounts for an arbitrary number of integration points through the thickness direction within a single layer of elements. The EAS formulation comprises an additive split of the Green–Lagrange material strain tensor, making the inclusion of nonlinear kinematics a straightforward task. A corotational coordinate system is used to integrate the constitutive law and to ensure incremental objectivity. A physical stabilization procedure is implemented in order to correct the element's rank deficiencies. A variety of shell‐type numerical benchmarks including plasticity, large deformations and contact are carried out, and good results are obtained when compared to well‐established formulations in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A direct domain/boundary element method (D/BEM) for dynamic analysis of elastoplastic Reissner–Mindlin plates in bending is developed. Thus, effects of shear deformation and rotatory inertia are included in the formulation. The method employs the elastostatic fundamental solution of the problem resulting in both boundary and domain integrals due to inertia and inelasticity. Thus, a boundary as well as a domain space discretization by means of quadratic boundary and interior elements is utilized. By using an explicit time‐integration scheme employed on the incremental form of the matrix equation of motion, the history of the plate dynamic response can be obtained. Numerical results for the forced vibration of elastoplastic Reissner–Mindlin plates with smooth boundaries subjected to impulsive loading are presented for illustrating the proposed method and demonstrating its merits. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a two‐dimensional displacement‐based meshfree‐enriched FEM (ME‐FEM) is presented for the linear analysis of compressible and near‐incompressible planar elasticity. The ME‐FEM element is established by injecting a first‐order convex meshfree approximation into a low‐order finite element with an additional node. The convex meshfree approximation is constructed using the generalized meshfree approximation method and it possesses the Kronecker‐delta property on the element boundaries. The gradient matrix of ME‐FEM element satisfies the integration constraint for nodal integration and the resultant ME‐FEM formulation is shown to pass the constant stress test for the compressible media. The ME‐FEM interpolation is an element‐wise meshfree interpolation and is proven to be discrete divergence‐free in the incompressible limit. To prevent possible pressure oscillation in the near‐incompressible problems, an area‐weighted strain smoothing scheme incorporated with the divergence‐free ME‐FEM interpolation is introduced to provide the smoothing on strains and pressure. With this smoothed strain field, the discrete equations are derived based on a modified Hu–Washizu variational principle. Several numerical examples are presented to demonstrate the effectiveness of the proposed method for the compressible and near‐incompressible problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A die shape design sensitivity analysis (DSA) and optimization for a sheet metal stamping process is proposed based on a Lagrangian formulation. A hyperelasticity‐based elastoplastic material model is used for the constitutive relation that includes a large deformation effect. The contact condition between a workpiece and a rigid die is imposed through the penalty method with a modified Coulomb friction model. The domain of the workpiece is discretized by a meshfree method. A continuum‐based DSA with respect to the rigid die shape parameter is formulated using a design velocity concept. The die shape perturbation has an effect on structural performance through the contact variational form. The effect of the deformation‐dependent pressure load to the design sensitivity is discussed. It is shown that the design sensitivity equation uses the same tangent stiffness matrix as the response analysis. The linear design sensitivity equation is solved at each converged load step without the need of iteration, which is quite efficient in computation. The accuracy of sensitivity information is compared to that of the finite difference method with an excellent agreement. A die shape design optimization problem is solved to obtain the desired shape of the workpiece to minimize spring‐back effect and to show the feasibility of the proposed method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper a strategy to perform incremental elastoplastic analysis using the symmetric Galerkin boundary element method for multidomain type problems is shown. The discretization of the body is performed through substructures, distinguishing the bem‐elements characterizing the so‐called active macro‐zones, where the plastic consistency condition may be violated, and the macro‐elements having elastic behaviour only. Incremental analysis uses the well‐known concept of self‐equilibrium stress field here shown in a discrete form through the introduction of the influence matrix (self‐stress matrix). The nonlinear analysis does not use updating of the elastic response inside each plastic loop, but at the end of the load increment only. This is possible by using the self‐stress matrix, both, in the predictor phase, for computing the stress caused by the stored plastic strains, and, in the corrector phase, for solving a nonlinear global system, which provides the elastoplastic solution of the active macro‐zones. The use of active macro‐zones gives rise to a nonlocal and path‐independent approach, which is characterized by a notable reduction of the number of plastic iterations. The proposed strategy shows several computational advantages as shown by the results of some numerical tests, reported at the end of this paper. These tests were performed using the Karnak.sGbem code, in which the present procedure was introduced as an additional module.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The rotation degree of freedom in discontinuous deformation analysis (DDA) may cause false volume expansion when a block undergoes a large rotation. We propose a block displacement function to prevent this defect. Specifically, the degrees of freedom in a block are redefined by incremental displacements at its vertices, and displacement is formulated based on the mean value coordinates. In addition, the finite element method with updated Lagrangian formulation is employed to derive the equilibrium equations, while the contact analysis and implicit time integration for dynamics is maintained from the original DDA. After each time step, the block configuration is updated by adding the new degrees of freedom to the previous coordinates of the block vertices. Results from numerical examples confirm the effectiveness of the proposed approach to prevent false volume expansion, ensure correctness of contact analysis, and provide realistic stress results when simulating large rotations.  相似文献   

14.
A small strain, three‐dimensional, elastic and elastoplastic Element‐Free Galerkin (EFG) formulation is developed. Singular weight functions are utilized in the Moving‐Least‐Squares (MLS) determination of shape functions and shape function derivatives allowing accurate, direct nodal imposition of essential boundary conditions. A variable domain of influence EFG method is introduced leading to increased efficiency in computing the MLS shape functions and their derivatives. The elastoplastic formulations are based on the consistent tangent operator approach and closely follow the incremental formulations for non‐linear analysis using finite elements. Several linear elastic and small strain elastoplastic numerical examples are presented to verify the accuracy of the numerical formulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a meshfree Galerkin method that is based on the first‐order shear deformation theory (FSDT) to study the elastic buckling behaviour of stiffened and un‐stiffened folded plates under partial in‐plane edge loads. The un‐stiffened folded plates are modelled as assemblies of flat plates. The stiffness and initial stress matrices of the flat plates are derived by the meshfree Galerkin method. A treatment is implemented to modify the stiffness and initial stress matrices, and the matrices are then superposed to obtain the stiffness and initial stress matrix of the entire folded plate. The analytical process for stiffened folded plates is similar, except that the effects of the stiffeners must be taken into account. Because no mesh is required, the proposed method is superior for studying problems that would involve remeshing in the finite element method. Several examples are employed to show the convergence and accuracy of the proposed method. The results obtained show good agreement with the results computed from the finite element analysis software ANSYS. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A continuum‐based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic response of non‐linear structural systems with elastic–plastic material and large deformation. The methodology is aimed for applications in non‐linear dynamic problems, such as crashworthiness design. The first‐order variations of the energy forms, load form, and kinematic and structural responses with respect to sizing design variables are derived. To obtain design sensitivities, the direct differentiation method and updated Lagrangian formulation are used since they are more appropriate for the path‐dependent problems than the adjoint variable method and the total Lagrangian formulation, respectively. The central difference method and the finite element method are used to discretize the temporal and spatial domains, respectively. The Hughes–Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and Jaumann rate‐based incrementally objective stress integration scheme are used to handle the finite strain and rotation. An elastic–plastic material model with combined isotropic/kinematic hardening rule is employed. A key development is to use the radial return algorithm along with the secant iteration method to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the finite difference results. Design optimization is carried out using the design sensitivity information. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In this paper, a meshfree co‐rotational formulation for two‐dimensional continua is proposed. In a co‐rotational formulation, the motion of a body is separated into rigid motion and strain‐producing deformation. Traditionally, this has been done in the setting of finite elements for beams and shell‐type elements. In the present work every node in a meshfree discretized domain has its own co‐rotating coordinate system. Three key ingredients are established in order to apply the co‐rotational formulation: (i) the relationship between global and local variables, (ii) the angle of rotation of a typical co‐rotating coordinate system, and (iii) a variationally consistent tangent stiffness matrix. An algorithm for the co‐rotational formulation based on load control is provided. Maximum‐entropy basis functions are used to discretize the domain and stabilized nodal integration is implemented to construct the global system of equations. Numerical examples are presented to demonstrate the validity of the meshfree co‐rotational formulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A new efficient meshfree method is presented in which the first‐order least‐squares method is employed instead of the Galerkin's method. In the meshfree methods based on the Galerkin formulation, the source of many difficulties is in the numerical integration. The current method, in this respect, has different characteristics and is expected to remove some of the integration‐related problems. It is demonstrated through numerical examples that the present formulation is highly robust to integration errors. Therefore, numerical integration can be performed with great ease and effectiveness using very simple algorithms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
功能梯度材料的数值分析通常模型化为材料参数如弹性模量在空间的梯度分布,这将导致更为复杂的应力场,给数值求解带来一定困难。高阶无网格法能更精确地反映应力场,然而过多的积分点导致其计算效率低下。该文将原本针对均匀材料发展的二阶一致无网格法直接应用于功能梯度材料。数值结果表明,它大幅度减少了所需的积分点数目,同时仍然保持高阶无网格法的高精度和高收敛性,因而显著改善了无网格法分析功能梯度材料的计算效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号