共查询到20条相似文献,搜索用时 15 毫秒
1.
Traian Iliescu 《International journal for numerical methods in engineering》1999,46(7):993-1000
This paper proposes and studies an algorithm for aligning a triangulation with a given convection field. Approximate solutions of convection‐dominated problems on flow‐aligned meshes typically have sharper internal layers, less over and undershooting and higher accuracy. The algorithm we present can be imported easily into any 2D finite element solver, does not change the number of meshpoints, and can improve solution quality quite dramatically. This improvement in solution quality on the flow‐aligned triangulation is illustrated for both the usual Galerkin method and the streamline‐diffusion method. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
2.
Mofdi El‐Amrani Mohammed Seaïd 《International journal for numerical methods in engineering》2010,81(7):805-834
We develop an essentially non‐oscillatory semi‐Lagrangian method for solving two‐dimensional tidal flows. The governing equations are derived from the incompressible Navier–Stokes equations with assumptions of shallow water flows including bed frictions, eddy viscosity, wind shear stresses and Coriolis forces. The method employs the modified method of characteristics to discretize the convective term in a finite element framework. Limiters are incorporated in the method to reconstruct an essentially non‐oscillatory algorithm at minor additional cost. The central idea consists in combining linear and quadratic interpolation procedures using nodes of the finite element where departure points are localized. The resulting semi‐discretized system is then solved by an explicit Runge–Kutta Chebyshev scheme with extended stages. This scheme adds in a natural way a stabilizing stage to the conventional Runge–Kutta method using the Chebyshev polynomials. The proposed method is verified for the recirculation tidal flow in a channel with forward‐facing step. We also apply the method for simulation of tidal flows in the Strait of Gibraltar. In both test problems, the proposed method demonstrates its ability to handle the interaction between water free‐surface and bed frictions. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
3.
Jian‐Gang Han Wei‐Xin Ren Yih Huang 《International journal for numerical methods in engineering》2006,66(1):166-190
The wavelet‐based methods are powerful to analyse the field problems with changes in gradients and singularities due to the excellent multi‐resolution properties of wavelet functions. Wavelet‐based finite elements are often constructed in the wavelet space where field displacements are expressed as a product of wavelet functions and wavelet coefficients. When a complex structural problem is analysed, the interface between different elements and boundary conditions cannot be easily treated as in the case of conventional finite‐element methods (FEMs). A new wavelet‐based FEM in structural mechanics is proposed in the paper by using the spline wavelets, in which the formulation is developed in a similar way of conventional displacement‐based FEM. The spline wavelet functions are used as the element displacement interpolation functions and the shape functions are expressed by wavelets. The detailed formulations of typical spline wavelet elements such as plane beam element, in‐plane triangular element, in‐plane rectangular element, tetrahedral solid element, and hexahedral solid element are derived. The numerical examples have illustrated that the proposed spline wavelet finite‐element formulation achieves a high numerical accuracy and fast convergence rate. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
Chongmin Song 《International journal for numerical methods in engineering》2004,61(8):1332-1357
A super‐element for the dynamic analysis of two‐dimensional crack problems is developed based on the scaled boundary finite‐element method. The boundary of the super‐element containing a crack tip is discretized with line elements. The governing partial differential equations formulated in the scaled boundary co‐ordinates are transformed to ordinary differential equations in the frequency domain by applying the Galerkin's weighted residual technique. The displacements in the radial direction from the crack tip to a point on the boundary are solved analytically without any a priori assumption. The scaled boundary finite‐element formulation leads to symmetric static stiffness and mass matrices. The super‐element can be coupled seamlessly with standard finite elements. The transient response is evaluated directly in the time domain using a standard time‐integration scheme. The stress field, including the singularity around the crack tip, is expressed semi‐analytically. The stress intensity factors are evaluated without directly addressing singular functions, as the limit in their definitions is performed analytically. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
Safdar Abbas Alaskar Alizada Thomas‐Peter Fries 《International journal for numerical methods in engineering》2010,82(8):1044-1072
Convection‐dominated problems typically involve solutions with high gradients near the domain boundaries (boundary layers) or inside the domain (shocks). The approximation of such solutions by means of the standard finite element method requires stabilization in order to avoid spurious oscillations. However, accurate results may still require a mesh refinement near the high gradients. Herein, we investigate the extended finite element method (XFEM) with a new enrichment scheme that enables highly accurate results without stabilization or mesh refinement. A set of regularized Heaviside functions is used for the enrichment in the vicinity of the high gradients. Different linear and non‐linear problems in one and two dimensions are considered and show the ability of the proposed enrichment to capture arbitrary high gradients in the solutions. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
In this paper a finite element formulation for frictionless contact problems with non-matching meshes in the contact interface
is presented. It is based on a non-standard variational formulation due to Nitsche and leads to a matrix formulation in the
primary variables. The method modifies the unconstrained functional by adding extra terms and a stabilization which is related
to the classical penalty method. These new terms are characterized by the presence of contact forces that are computed from
the stresses in the continuum elements. They can be seen as a sort of Lagrangian-type contributions. Due to the computation
of the contact forces from the continuum elements, some additional degrees-of-freedom are involved in the stiffness matrix
parts related to contact. These degrees-of-freedom are associated with nodes not belonging to the contact surfaces. 相似文献
7.
M. Groß P. Betsch P. Steinmann 《International journal for numerical methods in engineering》2005,63(13):1849-1897
In the present paper a systematic development of higher order accurate time stepping schemes which exactly conserve total energy as well as momentum maps of underlying finite‐dimensional Hamiltonian systems with symmetry is shown. The result of this development is the enhanced Galerkin (eG) finite element method in time. The conservation of the eG method is generally related to its collocation property. Total energy conservation, in particular, is obtained by a new projection technique. The eG method is, moreover, based on objective time discretization of the used strain measure. This paper is concerned with particle dynamics and semi‐discrete non‐linear elastodynamics. The related numerical examples show good performance in presence of stiffness as well as for calculating large‐strain motions. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
J. PETERA V. NASSEHI 《International journal for numerical methods in engineering》1996,39(24):4159-4182
In this paper we describe a new finite element model for the tidal hydrodynamics in estuaries. The mathematical model is based on the solution of the two-dimensional shallow water equations in a Lagrangian framework which is defined along the trajectories of fluid particles. This method gives a flexible and robust numerical scheme for moving boundary flows encountered in tidal water systems. In order to validate the developed model we have, at first instance, compared our numerical results with analytical solutions obtained for domains with simple geometries. Further tests are then conducted to demonstrate the model's ability to cope with conditions such as hydraulic shock, abrupt changes in the flow domain geometry and gradual changes of water surface breadth. The change in the water surface breadth corresponds to the drying and wetting of the plains along the banks of a typical tidal river/estuary reach. The drying and wetting of flood plains result in the existence of very shallow depth of water at some sections of the flow domain during a tidal cycle. The flow equations under these conditions are strongly convection dominated. Previously published tidal models rely on either, some form of upwinding or the use of extremely fine meshes to give stable results for the convection dominated very shallow depth computations in estuaries. We show that our model can yield stable and accurate results for very shallow depths in the tidal flow domains without using any kind of artifical damping or excessive mesh refinement. Computational costs of simulating hydrodynamical conditions in a natural water course, even using a depth averaged two-dimensional approach, can be very high. The ability of our scheme to cope with convection dominated conditions has enabled us to economize the computational efforts by using coarse meshes in our finite element calculations. After the validation stage, the developed model is applied to simulate the tidal conditions in a real estuary. The comparison of the model results with the field observations shows a close agreement between these sets of data 相似文献
9.
Hussein Hoteit Abbas Firoozabadi 《International journal for numerical methods in engineering》2018,114(5):535-556
Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite‐difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the cross flow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite‐difference methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local DG (LDG) method instead of the MFE to calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed. 相似文献
10.
Alexander Popp Markus Gitterle Michael W. Gee Wolfgang A. Wall 《International journal for numerical methods in engineering》2010,83(11):1428-1465
In this paper, an approach for three‐dimensional frictionless contact based on a dual mortar formulation and using a primal–dual active set strategy for direct constraint enforcement is presented. We focus on linear shape functions, but briefly address higher order interpolation as well. The study builds on previous work by the authors for two‐dimensional problems. First and foremost, the ideas of a consistently linearized dual mortar scheme and of an interpretation of the active set search as a semi‐smooth Newton method are extended to the 3D case. This allows for solving all types of nonlinearities (i.e. geometrical, material and contact) within one single Newton scheme. Owing to the dual Lagrange multiplier approach employed, this advantage is not accompanied by an undesirable increase in system size as the Lagrange multipliers can be condensed from the global system of equations. Moreover, it is pointed out that the presented method does not make use of any regularization of contact constraints. Numerical examples illustrate the efficiency of our method and the high quality of results in 3D finite deformation contact analysis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
T. S. Fisher K. E. Torrance 《International journal for numerical methods in engineering》1999,45(11):1631-1655
The complex‐variable boundary element method (CVBEM) is used to analyse forced convection in cooling passages with general, convex cross‐sections. Quadratic spline interpolation is employed for the modelling of coupled velocity and temperature fields. The method is well‐suited for ducts with curved surfaces and high geometric aspect ratios. The method is illustrated for ducts with rounded rectangular, elliptical and rounded diamond cross‐sections. General correlations are presented for the fully developed Nusselt number and Moody friction factor, and the Hagenbach entrance region factor. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
12.
S. Chippada T. C. Jue B. Ramaswamy 《International journal for numerical methods in engineering》1995,38(2):335-351
Thermocapillary-induced and buoyancy-driven convective flows that commonly occur in crystal growth are numerically simulated using Galerkin finite element method. The physical domain comprises of a open cavity with aspect ratio one and differentially heated vertical walls. The top gas–melt interface is free to deform subject to 90° contact angle boundary conditions at the two vertical walls. The unsteady two-dimensional Navier–Stokes equations are discretized in time using Chorin-type splitting scheme and pressure is determined from the Poisson's equation. The free surface is taken to be resting on vertical spines and its evolution in time is determined from the kinematic free surface equation. The governing equations for heat and momentum are solved in the Arbitrary Lagrangian Eulerian frame of reference to handle the moving boundary. The influence of Grashof number, Marangoni number, Bond number, Ohnesorge number and Prandtl number on the flow field and heat transfer is investigated. 相似文献
13.
Hwai-Ping Cheng Gour-Tsyh Yeh Jinchao Xu Ming-Hsu Li Robert Carsel 《International journal for numerical methods in engineering》1998,41(3):499-526
Increasing the efficiency of solving linear/linearized matrix equations is a key point to save computer time in numerical simulation, especially for three-dimensional problems. The multigrid method has been determined to be efficient in solving boundary-value problems. However, this method is mostly linked to the finite difference discretization, rather than to the finite element discretization. This is because the grid relationship between fine and coarse grids was not achieved effectively for the latter case. Consequently, not only is the coding complicated but also the performance is not satisfactory when incorporating the multigrid method into the finite element discretization. Here we present an approach to systematically prepare necessary information to relate fine and coarse grids regarding the three-dimensional finite element discretization, such that we can take advantage of using the multigrid method. To achieve a consistent approximation at each grid, we use A 2h= I 2hh A h I h2h and b 2h= I 2hh b h, starting from the composed matrix equation of the finest grid, to prepare the matrix equations for coarse grids. Such a process is implemented on an element level to reduce the computation to its minimum. To demonstrate the performance, this approach has been used to adapt two existing three-dimensional finite element subsurface flow and transport models, 3DFEMWATER and 3DLEWASTE, to their multigrid version, 3DMGWATER and 3DMGWASTE, respectively. Two example problems, one for each model, are considered for illustration. The computational result shows that the multigrid method can help solve the example problems very efficiently with our presented modular setting. © 1998 John Wiley & Sons, Ltd. 相似文献
14.
《International journal for numerical methods in engineering》2018,115(5):549-577
The present contribution provides a new approach to the design of energy momentum consistent integration schemes in the field of nonlinear thermo‐elastodynamics. The method is inspired by the structure of polyconvex energy density functions and benefits from a tensor cross product that greatly simplifies the algebra. Furthermore, a temperature‐based weak form is used, which facilitates the design of a structure‐preserving time‐stepping scheme for coupled thermoelastic problems. This approach is motivated by the general equation for nonequilibrium reversible‐irreversible coupling (GENERIC) framework for open systems. In contrast to complex projection‐based discrete derivatives, a new form of an algorithmic stress formula is proposed. The spatial discretization relies on finite element interpolations for the displacements and the temperature. The superior performance of the proposed formulation is shown within representative quasi‐static and fully transient numerical examples. 相似文献
15.
为提高板结构-声场耦合分析的计算精度,将有限元-径向点插值法(Finite Element-Radial Point Interpolation,FE-RPIM)推广到板结构-声场耦合问题的结构域分析中,推导了FE-RPIM/FEM法分析板结构-声场耦合问题的计算公式。板结构-声场耦合分析的FE-RPIM/FEM法在流体域中采用标准的有限元插值函数;在结构域中采用有限元-径向点插值法,其形函数由等参单元形函数和径向点插值函数相结合构成,继承了有限元法的单元兼容性和径向点插值法的Kronecker性质,提高了插值精度。以六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的有限元/有限元法(Finite element method/Finite element method, FEM/FEM)和光滑有限元/有限元法(Smoothed Finite Element Method/Finite Element Method, SFEM/FEM)相比,FE-RPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。 相似文献
16.
James P. Doherty Andrew J. Deeks 《International journal for numerical methods in engineering》2003,57(7):955-973
As a result of stresses experienced during and after the deposition phase, a soil strata of uniform material generally exhibits an increase in elastic stiffness with depth. The immediate settlement of foundations on deep soil deposits and the resultant stress state within the soil mass may be most accurately calculated if this increase in stiffness with depth is taken into account. This paper presents an axisymmetric formulation of the scaled boundary finite‐element method and incorporates non‐homogeneous elasticity into the method. The variation of Young's modulus (E) with depth (z) is assumed to take the form E=mEzα, where mE is a constant and αis the non‐homogeneity parameter. Results are presented and compared to analytical solutions for the settlement profiles of rigid and flexible circular footings on an elastic half‐space, under pure vertical load with αvarying between zero and one, and an example demonstrating the versatility and practicality of the method is also presented. Known analytical solutions are accurately represented and new insight regarding displacement fields in a non‐homogeneous elastic half‐space is gained. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
17.
Sandro Brasile 《International journal for numerical methods in engineering》2008,74(6):971-995
The paper describes a new assumed stress triangular element for Reissner–Mindlin plates, called TIP3, with three nodes and three degrees of freedom per node. The kinematics is constructed by means of the so‐called linked interpolation ruled by technically significant degrees of freedom (i.e. one transversal displacement and two rotations per node) without using additional bubble modes. The static representation starts from a moment–shear uncoupled polynomial approximation and is constrained to satisfy some equilibrium conditions in order to reduce the stress parameters to a minimum number. The resulting element is locking free, presents correct rank and passes the bending patch test even for very thin plates. The good performances of the element are demonstrated by several comparisons with other triangular plate elements available in the literature. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
18.
Denis Davydov Toby D. Young Paul Steinmann 《International journal for numerical methods in engineering》2016,106(11):863-888
In this paper, details of an implementation of a numerical code for computing the Kohn–Sham equations are presented and discussed. A fully self‐consistent method of solving the quantum many‐body problem within the context of density functional theory using a real‐space method based on finite element discretisation of realspace is considered. Various numerical issues are explored such as (i) initial mesh motion aimed at co‐aligning ions and vertices; (ii) a priori and a posteriori optimization of the mesh based on Kelly's error estimate; (iii) the influence of the quadrature rule and variation of the polynomial degree of interpolation in the finite element discretisation on the resulting total energy. Additionally, (iv) explicit, implicit and Gaussian approaches to treat the ionic potential are compared. A quadrupole expansion is employed to provide boundary conditions for the Poisson problem. To exemplify the soundness of our method, accurate computations are performed for hydrogen, helium, lithium, carbon, oxygen, neon, the hydrogen molecule ion and the carbon‐monoxide molecule. Our methods, algorithms and implementation are shown to be stable with respect to convergence of the total energy in a parallel computational environment. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Antonio Huerta Sonia Fernndez‐Mndez 《International journal for numerical methods in engineering》2000,48(11):1615-1636
A mixed hierarchical approximation based on finite elements and meshless methods is presented. Two cases are considered. The first one couples regions where finite elements or meshless methods are used to interpolate: continuity and consistency is preserved. The second one enriches a finite element mesh with particles. Thus, there is no need to remesh in adaptive refinement processes. In both cases the same formulation is used, convergence is studied and examples are shown. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
20.
Edward Zywicz Michael A. Puso 《International journal for numerical methods in engineering》1999,44(4):439-459
A Lagrange‐multiplier based approach is presented for the general solution of multi‐body contact within an explicit finite element framework. The technique employs an explicit predictor step to permit the detection of interpenetration and then utilizes a corrector step, whose solution is obtained with a pre‐conditioned matrix‐free conjugate gradient projection method, to determine the Lagrange multipliers necessary to eliminate the predicted penetration. The predictor–corrector algorithm is developed for deformable bodies based upon the central difference method, and for rigid bodies from momentum and energy conserving approaches. Both frictionless and Coulomb‐based frictional contact idealizations are addressed. The technique imposes no time‐step constraints and quickly mitigates velocity discontinuities across closed interfaces. Special attention is directed toward contact between rigid bodies. Algorithmic moment arms conserve the translational and angular momentums of the system in the absence of external loads. Elastic collisions are captured with a two‐phase predictor–corrector approach and a geometrically approximate velocity jump criterion. The first step solves the inelastic contact problem and identifies inactive constraints between rigid bodies, while the second step generates the necessary velocity jump condition on the active constraints. The velocity criterion is shown to algorithmically preserve the system kinetic energy for two unconstrained rigid bodies. Copyright © 1999 John Wiley & Sons, Ltd. This paper was produced under the auspices of the U.S. Government and it is therefore not subject to copyright in the U.S. 相似文献