首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous chitosan scaffolds were prepared with a freeze‐casting technique with different concentrations, 1.5 and 3 wt %, and also different cooling rates, 1 and 4°C/min. The pore morphology, porosity, pore size, mechanical properties, and water absorption characteristics of the scaffolds were studied. Scanning electron microscopy images showed that the freeze‐cast scaffolds were fully interconnected because of the existence of pores on the chitosan walls in addition to many unidirectionally elongated pores. Increases in the chitosan concentration and freezing rate led to elevations in the thickness of the chitosan walls and reductions in the pores size, respectively. These two results led to the enhancement of the compressive strength from 34 to 110 kPa for the scaffolds that had 96–98% porosity. Also, augmentation of the chitosan concentration and decreases in the freezing rate led to the reduction of the number of pores on the chitosan walls. Furthermore, the volume of water absorption increased with a reduction in the chitosan concentration and cooling rate from 690 to 1020%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41476.  相似文献   

2.
ABSTRACT: Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite films are formed with different characteristics - surface morphologies, deposition rates, and crystallite size of α-Al2O3. Through the results of micro-Vickers hardness testing, it was confirmed that the mechanical properties of the polymer itself are associated with the performances of the ceramic-polymer composite films. To support and explain these results, the microstructures of the two types of polymer powders were observed after planetary milling and an additional modeling test was carried out. As a result, we could conclude that the PMMA powder is distorted by the impact of the Al2O3 powder, so that the resulting Al2O3-PMMA composite film had a very small amount of PMMA and a low deposition rate. In contrast, when using PI powder, the Al2O3-PI composite film had a high deposition rate due to the cracking of PI particles. Consequently, it was revealed that the mechanical properties of polymers have a considerable effect on the properties of the resulting ceramic-polymer composite thick films.  相似文献   

3.
Wollastonite/hydroxyapatite composite scaffolds are proposed as bone graft. An investigation on scaffold with varying reinforcing wollastonite content fabricated by polymeric sponge replica is reported. The composition, sintering behavior, morphology, porosity and mechanical strength were characterized. All the scaffolds had a highly porous well-interconnected structure. A significant increase in mechanical strength is achieved by adding a 50% wollastonite phase. The most mechanically resistant (50/50) wollastonite/hydroxyapatite scaffolds were soaked in both simulated body fluid (SBF) and Tris–HCl solution in order to assess bioactivity and biodegradability. A carbo-hydroxyapatite layer formed on their surfaces when immersed in SBF. The biodegradability tests reveals that the composite scaffold shows a higher degradation rate compared to pure hydroxyapatite used as comparison. These results demonstrate that the incorporation of a 50% of wollastonite phase in hydroxyapatite matrix is effective in improving the strength and the bioactive and biodegradable properties of the porous scaffolds.  相似文献   

4.
Biodegradable poly(L ‐lactide) (PLLA) scaffolds with well‐controlled interconnected irregular pores were fabricated by a porogen leaching technique using gelatin particles as the porogen. The gelatin particles (280–450 μm) were bonded together through a treatment in a saturated water vapor condition at 70°C to form a 3‐dimensional assembly in a mold. PLLA was dissolved in dioxane and was cast onto the gelatin assembly. The mixtures were then freeze‐dried or dried at room temperature, followed by removal of the gelatin particles to yield the porous scaffolds. The microstructure of the scaffolds was characterized by scanning electron microscopy with respect to the pore shape, interpore connectivity, and pore wall morphology. Compression measurements revealed that scaffolds fabricated by freeze‐drying exhibited better mechanical performance than those by room temperature dying. Along with the increase of the polymer concentration, the porosity of the scaffolds decreased whereas the compressive modulus increased. When the scaffolds were in a hydrated state, the compressive modulus decreased dramatically. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1373–1379, 2005  相似文献   

5.
Scaffolds with multimodal pore structure are essential to cells differentiation and proliferation in bone tissue engineering.Bi-/multi-modal porous PLGA/hydroxyapatite composite scaffolds were prepared by supercritical CO_2 foaming in which hydroxyapatite acted as heterogeneous nucleation agent.Bimodal porous scaffolds were prepared under certain conditions,i.e.hydroxyapatite addition of 5%,depressurization rate of 0.3 MPa·min~(-1),soaking temperature of 55℃,and pressure of 9 MPa.And scaffolds presented specific structure of small pores(122 μm±66 μm)in the cellular walls of large pores(552μm±127μm).Furthermore,multimodal porous PLGA scaffolds with micro-pores(37 μm±11 μm)were obtained at low soaking pressure of 7.5 MPa.The interconnected porosity of scaffolds ranged from(52.53±2.69)% to(83.08±2.42)%by adjusting depressurization rate,while compression modulus satisfied the requirement of bone tissue engineering.Solvent-free CO_2 foaming method is promising to fabricate bi-/multi-modal porous scaffolds in one step,and bioactive particles for osteogenesis could serve as nucleation agents.  相似文献   

6.
《Ceramics International》2017,43(18):16638-16651
Crack-free functionally graded TiC particle (TiCp) reinforced Ti6Al4V (TiCp/Ti6Al4V) composite was manufactured by laser melting deposition (LMD) technology with TiC volume fraction changing gradually from 0% to 50%. This research focuses on the relationship between the microstructure and mechanical properties (microhardness and tensile properties) of TiCp/Ti6Al4V composites under different TiC volume fractions. Besides the unmelted TiC particles, the granular and chain shaped eutectic TiC phases are observed in the composite with 5 vol% TiC due to the melting and dissolution of TiC particles into matrix. The granular and dendritic primary TiC phases are obtained in the composite with 10 vol% TiC, while the chain shaped eutectic TiC phases can scarcely be seen. The main reinforcement phases are primary TiC phases when the TiC volume fraction exceeds 15%. (i) The quantity of unmelted TiC particles, (ii) the quantity and size of primary TiC phases and (iii) the porosity of composite increase gradually when the TiC volume fraction increases. The interfaces exhibit good bonding between consecutive layers. The microhardness of the functionally graded TiCp/Ti6Al4V composite increases gradually with TiC volume fraction increasing. It is attributed to the C element in solid solution and the appearance of eutectic and primary TiC phases. The microhardness at the top layer with 50 vol% TiC is improved by nearly 94% compared with that at the Ti6Al4V side. The tensile strength of TiCp/Ti6Al4V composite with 5 vol% TiC is enhanced by nearly 12.3% compared with that of the Ti6Al4V matrix alloy. However, both the tensile strength and elongation of composite decrease gradually when the TiC volume fraction exceeds 5%. The reason is that the quantity of brittle unmelted TiC particles and the quantity and size of dendritic TiC phases increase with TiC volume fraction increasing. The fracture mechanism of the TiCp/Ti6Al4V composite is quasi-cleavage fracture.  相似文献   

7.
This work deals with the additive manufacturing and characterization of hydroxyapatite scaffolds mimicking the trabecular architecture of cancellous bone. A novel approach was proposed relying on stereolithographic technology, which builds foam-like ceramic scaffolds by using three-dimensional (3D) micro-tomographic reconstructions of polymeric sponges as virtual templates for the manufacturing process. The layer-by-layer fabrication process involves the selective polymerization of a photocurable resin in which hydroxyapatite particles are homogeneously dispersed. Irradiation is performed by a dynamic mask that projects blue light onto the slurry. After sintering, highly-porous hydroxyapatite scaffolds (total porosity ~0.80, pore size 100-800 µm) replicating the 3D open-cell architecture of the polymeric template as well as spongy bone were obtained. Intrinsic permeability of scaffolds was determined by measuring laminar airflow alternating pressure wave drops and was found to be within 0.75-1.74 × 10−9 m2, which is comparable to the range of human cancellous bone. Compressive tests were also carried out in order to determine the strength (~1.60 MPa), elastic modulus (~513 MPa) and Weibull modulus (m = 2.2) of the scaffolds. Overall, the fabrication strategy used to print hydroxyapatite scaffolds (tomographic imaging combined with digital mirror device [DMD]-based stereolithography) shows great promise for the development of porous bioceramics with bone-like architecture and mass transport properties.  相似文献   

8.
In this study, mesoporous bioactive glass particles (MBGs) are incorporated into poly(lactic-co-glycolic acid) (PLGA) to fabricate highly interconnected macroporous composite scaffolds with enhanced mechanical and biological properties via a developed supercritical carbon dioxide (scCO2) foaming method. Scaffolds show favorable highly interconnected and macroporous structure through a high foaming pressure and long venting time foaming strategy. Specifically, scaffolds with porosity from 73% to 85%, pore size from 120 μm to 320 μm and interconnectivity of over 95% are controllably fabricated at MBG content from 0 wt% to 20 wt%. In comparison with neat PLGA scaffolds, composite scaffolds perform improved strength (up to 1.5 folds) and Young's modulus (up to 3 folds). The interconnected macroporous structure is beneficial to the ingrowth of cells. More importantly, composite scaffolds also provide a more promising microenvironment for cellular proliferation and adhesion with the release of bioactive ions. Hopefully, MBG/PLGA scaffolds developed by the green foaming strategy in this work show promising morphological, mechanical and biological features for tissue regeneration.  相似文献   

9.
Melt-grown alumina-based composites are receiving increasing attention due to their potential for aerospace applications;however,the rapid preparation of high-performance components remains a challenge.Herein,a novel route for 3D printing dense(<99.4%)high-performance melt-grown alumina-mullite/glass composites using directed laser deposition(DLD)is proposed.Key issues on the composites,including phase composition,microstructure formation/evolution,densification,and mechanical properties,are systematically investigated.The toughening and strengthening mechanisms are analyzed using classical fracture mechanics,Griffith strength theory,and solid/glass interface infiltration theory.It is demonstrated that the composites are composed of corundum,mullite,and glass,or corundum and glass.With the increase of alumina content in the initial powder,corundum grains gradually evolve from near-equiaxed dendrite to columnar dendrite and cellular structures due to the weakening of constitutional undercooling and small nucleation undercooling.The microhardness and fracture toughness are the highest at 92.5 mol%alumina,with 18.39±0.38 GPa and 3.07±0.13 MPa-m1/2,respectively.The maximum strength is 310.1±36.5 MPa at 95 mol%alumina.Strength enhancement is attributed to the improved densification due to the trace silica doping and the relief of residual stresses.The method unravels the potential of preparing dense high-performance melt-grown alumina-based composites by the DLD technology.  相似文献   

10.
The mechanical properties of biomedical scaffolds are important for applications in tissue regeneration. The dispensing system described herein, which is based on a solid free‐form fabrication technique, enables the production of design‐based scaffolds with controllable pore structures. Although current plotting systems can easily fabricate a variety of three‐dimensional scaffolds, the mechanical properties of these constructs are difficult to control because of low processing speed. To overcome this limitation, a new dispensing method, which uses a piezoelectric vibration system to improve mechanical properties, has been developed. Polycaprolactone (PCL) strands fabricated using this technique were roughly 70% stronger than normal PCL strands. To explain this increase in mechanical strength, the combined effects of the piezoelectric system and the melt‐dispensing process on the crystalline morphology and molecular orientation of PCL strands were investigated. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

11.
Novel peroxide‐crosslinked composite materials based on ultra high molecular weight polyethylene fibers were studied in comparison with their non‐crosslinked homologues. Two material types were prepared, either by embedding the fibers in a low‐density polyethylene matrix, or by compacting neat fibers. The resulting composites were analyzed by differential scanning calorimetry, focusing on the typical double‐melting endotherm of the PE fibers, and by X‐ray diffraction, concentrating on the characteristic weak 010 reflection of the triclinic phase in the fiber. Mechanical testing of unidirectional composites showed crosslinking to be highly advantageous, yielding significant property enhancement, e.g., increasing the flexural modulus from 28 to 33 GPa in the compacted fiber composite. The advantage results from the crosslinking mechanism, entailing only partial melting that is confined to the fiber skin, while retaining a significant degree of crystallinity in the fiber.  相似文献   

12.
Oxide/oxide composites reinforced by two-dimensional fiber fabrics are important structural materials at high temperatures but exhibit low delamination resistance. This study developed a simple slurry infiltration and sintering (SIS) process to fabricate three-dimensional oxide/oxide composites. The results showed that a homogeneous microstructure in three directions was obtained. This composite possessed a weak matrix, which had a porous structure and low elastic modulus. Typical mechanical properties of the composite were not lower than those of two-dimensional oxide/oxide composites since the flexural strength and fracture toughness were 332.4 MPa and 11.6 MPa·m1/2, respectively. Particularly, the composite had a good interlaminar shear strength of 25.4 MPa and a superior transthickness tensile strength of 5.6 MPa. X-ray computed tomography showed that fiber yarns in the through-thickness direction effectively impeded crack propagation and enhanced delamination resistance. Therefore, the reported SIS process is a very promising method for manufacturing three-dimensional oxide/oxide composites.  相似文献   

13.
In this article, the properties of a polycaprolactone and starch composite (PCL/starch) and an acrylic acid grafted polycaprolactone and starch composite (PCL‐g‐AA/starch) were examined by Fourier transform infrared spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, Instron mechanical testing, and scanning electron microscopy. Mechanical properties of PCL became significantly worse when it was blended with starch, due to the poor compatibility between the two phases. Much better dispersion and homogeneity of starch in the polymer matrix was obtained when PCL‐g‐AA was used in place of PCL in the composite. Improved mechanical and thermal properties of the PCL‐g‐AA/starch composite, notably an increase in tensile strength at breakpoint, evidenced its superiority to the PCL/starch one. Furthermore, PCL‐g‐AA/starch was more easily processed than PCL/starch because the former had lower melt viscosity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2888–2895, 2003  相似文献   

14.
Inducing differentiation of bone marrow stem cells to generate new bone tissue is highly desirable by controlling the release of some osteoinductive or osteoconductive factors from porous scaffolds. In this study, dexamethasone was selected as a representative of small molecule drugs and dexamethasone‐loading porous poly(lactide‐co‐glycolide) (PLGA) scaffolds were successfully fabricated by supercritical CO2 foaming. Scanning electron microscopy images showed that scaffolds had rough and relatively interconnected pores facilitating cells adhesion and growth. Specially, dexamethasone which was incorporated into PLGA matrix in a molecularly dispersed state could serve as a nucleation agent to be helpful for the formation of interconnected pores. Dexamethasone‐loading porous PLGA scaffolds exhibited sustained release profile, and the delivery of dexamethasone from porous scaffolds could last for up to 2 months. The cumulative released amount of dexamethasone was relevant with drug loading capacity (1.66%–2.95%) and pore structure of scaffolds; while the release behavior was anomalous (non‐Fickian) transport by fitting with the simple exponential equation, which had a diffusional exponent n higher than 0.5. It is feasible to fabricate drug‐loading porous scaffolds by supercritical CO2 foaming with specific pore structure and sustained release profile, which can be well applied in bone tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46207.  相似文献   

15.
Mechanical properties and morphological studies of compatibilized blends of polyamide‐6 (PA‐6)/K resin grafted with maleic anhydride (K‐g‐MAH) and PA‐6/K resin/K‐g‐MAH were investigated as functions of K resin/K‐g‐MAH and dispersed phase K resin concentrations, and all the blends were prepared using twin screw extruder followed by injection molding. Scanning electron microscopy (SEM) were used to assess the fracture surface morphology and the dispersion of the K resin in PA‐6 continuous phase, the results showing extensive deformation in presence of K‐g‐MAH, whereas, uncompatibilized PA‐6/K resin blends show dislodging of K resin domains from the PA‐6 matrix. Dynamic mechanical thermal analysis (DMTA) test reveals the partially miscibility of PA‐6 with K‐g‐MAH, and differential scanning calorimetry (DSC) results further identified that the introduction of K‐g‐MAH greatly improved the miscibility between PA‐6 and K resin. The mechanical properties of PA‐6/K resin blends and K‐g‐MAH were studied through bending, tensile, and impact properties. The Izod notch impact strength of PA‐6/K‐g‐MAH blends increase with the addition of K‐g‐MAH, when the K‐g‐MAH content adds up to 20 wt %, the impact strength is as more than 6.2 times as pure PA‐6, and accompanied with small decrease in the tensile and bending strength less than 12.9% and 17.5%, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Based on the character of a clay that could be separated into many 1‐nm thickness monolayers, clay styrene‐butadiene rubber (SBR) nanocomposites were acquired by mixing the SBR latex with a clay/water dispersion and coagulating the mixture. The structure of the dispersion of clay in the SBR was studied through TEM. The mechanical properties of clay/SBR nanocomposites with different filling amounts of clay were studied. The results showed that the main structure of the dispersion of clay in the SBR was a layer bundle whose thickness was 4–10 nm and its aggregation formed by several or many layer bundles. Compared with the other filler, some mechanical properties of clay/SBR nanocomposites exceeded those of carbon black/SBR composites and they were higher than those of clay/SBR composites produced by directly mixing clay with SBR through regular rubber processing means. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1873–1878, 2000  相似文献   

17.
A new kind of organophilic clay, cotreated by methyl tallow bis‐2‐hydroxyethyl quaternary ammonium and epoxy resin into sodium montmorillonite (to form a strong interaction with polyamide 66 matrix), was prepared and used in preparing PA66/clay nanocomposites (PA66CN) via melt‐compounding method. Three different types of organic clays, CL30B–E00, CL30B–E12, and CL30B–E23, were used to study the effect of epoxy resin in PA66CN. The morphological, mechanical, and thermal properties have been studied using X‐ray diffraction, transmission electron microscopy (TEM), mechanical, and thermal analysis, respectively. TEM analysis of the nanocomposites shows that most of the silicate layers were exfoliated to individual layers and to some thin stacks containing a few layers. PA66CX–E00 and PA66CX–E12 had nearly exfoliated structures in agreement with the SAXS results, while PA66CX–E23 shows a coexistence of intercalated and exfoliated structures. The storage modulus of PA66 nanocomposites was higher than that of the neat PA66 in the whole range of tested temperature. On the other hand, the magnitude of the loss tangent peak in α‐ or β‐transition region decreased gradually with the increase in the clay loading. Multiple melting behavior in PA66 was also observed. Thermal stability more or less decreased with an increasing inorganic content. Young's modulus and tensile strength were enhanced by introducing organoclay. Among the three types of nanocomposites prepared, PA66CX–E12 showed the highest improvement in properties, while PA66CX–E23 showed properties inferior to that of PA66CX–E00 without epoxy resin. In conclusion, an optimum amount of epoxy resin is required to form the strong interaction with the amide group of PA66. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1711–1722, 2006  相似文献   

18.
A novel organic rectorite (OREC) was prepared by treating the natural sodium‐rectorite (Na‐REC) with ionic liquid 1‐hexadecyl‐3‐methylimidazolium bromide ([C16mim]Br). X‐ray diffraction (XRD) analysis showed that the interlayer spacing of the OREC was expanded from 2.23nm to 3.14nm. Furthermore, two types of OREC/epoxy nanocomposites were prepared by using epoxy resin (EP) as matrix, 2‐ethyl‐4‐methylimidazole (2‐E‐4‐MI) and tung oil anhydride (TOA) as curing agents, respectively. XRD and transmission electron microscope (TEM) analysis showed that the intercalated nanocomposite was obtained with addition of the curing agent 2‐E‐4‐MI, and the exfoliated nanocomposite was obtained with addition of the curing agent TOA when the OREC content was less than 2 wt %. For the exfoliated nanocomposite, the mechanical and thermal property tests indicated that it had the highest improvement when OREC content was 2 wt% in EP. Compared to pure EP, 60.3% improvement in tensile strength, 26.7% improvement in bending strength, 34% improvement in bending modulus, 14°C improvement in thermal decomposition temperature (Td) and 5.7°C improvement in glass transition temperature (Tg) were achieved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Polypropylene/polyamide 6 blends and their nanocomposites with layered silicates or talc were prepared in a melt‐compounding process to explore their mechanical performance. The thermomechanical behavior, crystallization effects, rheology, and morphology of these materials were studied with a wide range of experimental techniques. In all cases, the inorganic filler was enriched in the polyamide phase and resulted in a phase coarsening of the polypropylene/polyamide nanocomposite in comparison with the nonfilled polypropylene/polyamide blend. The mechanical properties of these nanoblends were consequently only slightly better than those of the pure polymers with respect to the modulus, whereas the impact level was below that of the pure polymers, reflecting the heterogeneity of the nanoblend. Polymer‐specific organic modification of the nanoclays did not result in a better phase distribution, which would be required for better overall performance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 283–291, 2006  相似文献   

20.
A functionalized high‐density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 μm (PA6/UHMWPE, 80/20) to less than 4 μm (PA6/UHMWPE/HDPE‐g‐MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE‐g‐MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE‐g‐MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE‐g‐MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 232–238, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号