首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of ester‐linked tetracarboxylic dianhydrides (TA‐X) were synthesized from trimellitic anhydride chloride and 4,4′‐biphenol analogs containing different numbers and positions of methyl substituents. Aromatic poly(ester imide)s (PEsIs) were polymerized from TA‐Xs and 2,2′‐bis(trifluoromethyl)benzidine to investigate the film properties systematically. A significant substituent effect on the target properties (Tg, optical transparency, the linear coefficient of thermal expansion (CTE) and ductility) was observed. A PEsI containing 2,2′,3,3′,5,5′‐hexamethyl‐substituted p‐biphenylene units was chemically imidized in a homogeneous state. It was highly soluble at room temperature, even in less hygroscopic non‐amide solvents such as cyclopentanone (CPN), and provided a stable CPN solution with a high solid content. The CPN‐cast PEsI film was almost colorless as suggested from the rather low yellowness index (3.2), high light transmittance at 400 nm (71.5%) and very low haze (1.15%). This PEsI film also had a high Tg (294 °C, determined by thermomechanical analysis) in addition to a low CTE (21.7 ppm K?1), moderate film ductility and very low water uptake. A structural modification of the PEsI by copolymerization with a tetracarboxylic dianhydride with a rigid/linear structure was effective in further reducing the CTE while maintaining the other excellent target properties. Thus, some of the PEsIs developed in this work are promising candidates as novel plastic substrates for use in image display devices. © 2017 Society of Chemical Industry  相似文献   

2.
A series of poly(ester imide) (PEsI) copolymers were synthesized using 3,3′,4,4′-biphenyltetracarboxylic dianhydride (4,4′-BPDA), 2,2′-bis(trifluoromethyl)benzidine (TFMB), and 4-aminophenyl-4′-aminobenzoate (APAB) as the monomers. Wide-angle x-ray diffraction results revealed that the average interchain distances of these polymers ranged from 4.6 to 5.7 Å, increasing with the increase of TFMB contents. PEsI-0.3 and PEsI-0.4 exhibited a glass transition temperature (Tg) of 445 and 455°C, respectively, while no distinctive Tg was observed for the PEsI copolymers when the APAB content was >50 mol%. The coefficients of thermal expansion (CTE) of these PEsI copolymers ranged from 3.8 to 24.2 ppm K−1, increasing with the increase of TFMB contents. The PEsI copolymers exhibited a modulus of 5.7–7.8 GPa, a tensile strength of 282–332 MPa, and an elongation-at-break of 10.2%–23.3%. Furthermore, these copolymers exhibited a dielectric constant of 2.53–2.76, and a low dissipation factor (Df) of 0.0026–0.0032 at 10 GHz in dry state. Because of their excellent combined properties, these PEsI copolymers are promising candidates as dielectric substrate materials for the applications in next generation flexible printed circuit boards operating at high frequencies.  相似文献   

3.
Two diisocyanate monomers containing methylene groups and built‐in imide structure have been prepared from the parent diacids via the Curtius–Weinstock rearrangement. Polyimides have been synthesized by solution polymerization of these isocyanates with pyromellitic dianhydride (PMDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene‐2,2‐bis(phthalic‐anhydride) (6FDA). All monomers and polymers were characterized by conventional methods, and the physical properties of the polymers, including solution viscosity, solubility, thermal stability and thermal behaviour, were studied. © 2000 Society of Chemical Industry  相似文献   

4.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
Copolyimide derivatives were prepared from two carboxylic dianhydrides [3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and pyromellitic anhydride (PMDA)] and a single diamine (bis[4‐(3‐aminophenoxy)phenyl]sulfone [BAPS]) following one‐step polymerization. Copolymers could be arranged in sequence through different molar ratios of dianhydride compounds. These polymers were characterized by viscosity, thermal and mechanical properties, solubility, etc. To understand the behavior of the properties, according to the ratio of the dianhydride compound, a copolymer having various properties could be obtained. Further, it was proved that their properties could be determined from the compositions. The solubility of copolyimides with a large molecular weight was moderately improved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 853–859, 2003  相似文献   

6.
A new indane containing unsymmetrical diamine monomer ( 3 ) was synthesized. This diamine monomer leads to a number of novel semifluorinated poly (ether imide)s when reacted with different commercially available dianhydrides like benzene‐1,2,4,5‐tetracarboxylic dianhydride (PMDA), benzophenone‐3,3′, 4,4′‐tetracarboxylic dianhydride (BTDA), 4,4′‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐(4,4′‐Isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) by thermal imidization route. All the poly(ether imide)s showed excellent solubility in several organic solvents such as N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), tetrahydrofuran (THF), chloroform (CHCl3) and dichloromethane (DCM) at room temperature. These light yellow poly (ether imide)s showed very low water absorption (0.19–0.30%) and very good optical transparency. Wide angle X‐ray diffraction measurements revealed that these polymers were amorphous in nature. The polymers exhibited high thermal stability up to 526°C in nitrogen with 5% weight loss, and high glass transition temperature up to 265°C. The polymers exhibited high tensile strength up to 85 MPa, modulus up to 2.5 GPa and elongation at break up to 38%, depending on the exact polymer structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Fluorinated polyimides were prepared from 2,2′,6,6′-tetrafluorobenzidine and four conventional dianhydride monomers by a solution polycondensation reaction followed by a chemical imidization. Polyimide based on 2,2′,6,6′-tetrafluorobenzidine and hexafluoroisopropylidene bis(3,4-phthalic anhydride) (6FDA) is soluble in organic solvents such as NMP, DMA, DMF, THF, chloroform, and acetone while those based on 2,2′,6,6′-tetrafluorobenzidine and pyromellitic dianhydride (PMDA), benzophenone-3,3′,4,4′-tetracarboxylic acid dianhydride (BTDA), diphenylether-3,3′,4,4′-tetracarboxylic acid dianhydride (ETDA) are not. Polyimide from 2,2′,6,6′-tetrafluorobenzidine and 6FDA possesses high optical transparency at 350–700 nm and has a in-plane refractive index of 1.558 at 632.8 nm. All polyimides exhibit glass transition temperatures above 350°C. They also possess very high thermal stability. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1605–1609, 1998  相似文献   

8.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

9.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol‐A (6b), 4,4′‐hydroquinone (6c), 1,8‐dihydroxyanthraquinone (6d), 4,4‐dihydroxy biphenyl (6e), and 2,4‐dihydroxyacetophenone (6f) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly and are completed within 20 min, producing a series of optically active poly(ester‐imide)s with good yield and moderate inherent viscosity of 0.10–0.26 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐imide)s are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2211–2216, 2002  相似文献   

10.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

11.
Soluble copolysulfoneimides were synthesized by thermal two‐step method in solution of N‐methyl‐2‐pyrrolidone. The used aromatic diamines were bis[4‐(3‐aminophenoxy)phenyl]sulfone (BAPS‐m) and 3,3′‐diaminosulfone, and dianhydrides were pyromellitic dianhydride, 4,4′‐oxyphthalic anhydride, and 3,3′,4,4′‐diphenylsulfone tetracarboxylic dianhydride. The molar ratio of diamines was changed to reduce the content of BAPS‐m. The thermal and mechanical properties of polyimides were investigated. The polyimide ultrafiltration membrane with molecular weight cut‐off of 10 kDa could be successfully prepared by phase‐inversion method. Various solvent (water, alcohols, acetone, and hexane) fluxes were measured to investigate solvent‐resistance and membrane behavior during solvent permeation. The activation energy relationship between hexane flux and viscosity with temperature was also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1024–1030, 2002  相似文献   

12.
A series of novel solvent‐soluble polyimides based on the diamine of 3,3‐bis[4‐(4‐aminophenoxy)phenyl] phthalide (BAPP) were prepared. The effects of the dianhydride structures on the pervaporation performance of aqueous alcohol mixtures through these polyimide membranes were studied. The BAPP‐based polyimide membranes exhibited water permselectivity during all process runs. The permeation rate increased with the addition of bulky groups to the polyimide backbone. The effects of the feed solution concentration, feed solution temperature, and carbon atom number of the feed alcohol on the pervaporation performance were also investigated systematically. Optimum pervaporation results, a separation factor of 22 and a permeation rate of 270 g/m2 h, were obtained for a 90 wt % feed aqueous ethanol solution through a 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride polyimide membrane at 25°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2046–2052, 2005  相似文献   

13.
A series of novel phenylethynyl‐endcapped polyimide oligomers were prepared by polycondensation of an aromatic diamine mixture of 1,3‐bis(4‐aminophenoxy) benzene (1,3,4‐APB) and 3,4′‐oxydianiline (3,4′‐ODA) with different aromatic dianhydrides including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐(hexafluoro isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐[2,2,2‐trifluoro‐1‐(3′,5′‐bis‐(trifluoro‐methyl)phenyl)ethylidene]diphthalic anhydride (9FDA) in the presence of 4‐phenyl‐ethynylaniline (PEA) as endcapping agent in aprotic solvent at elevated temperature. The chemical structures, thermal behavior, and melt rheological properties of the synthesized polyimide oligomers were investigated. Experimental results indicated that the fluorinated polyimide oligomers derived from 6FDA (PI‐2) and 9FDA (PI‐4) are amorphous solid resins and exhibited lower melt viscosities than those prepared from the unfluorinated aromatic dianhydrides such as BPDA and ODPA. The BPDA‐based polyimide oligomers with a molar ratio of 1,3,4‐APB/3,4′‐ODA = 50:50 (PI‐5) showed lower melt viscosity than those derived from a mixture of 1,3,4‐APB and 3,4′‐ODA with molar ratios of 75:25 and 100:0, respectively. In addition, the melt viscosity of the polyimide oligomers increased obviously with increasing of the polymer calculated molecular weights. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Two series of aromatic polyimides containing various linkage groups based on 2,7‐bis(4‐aminophenoxy)naphthalene or 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane and different aromatic dianhydrides, namely 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride), 4,4′‐(hexafluoroisopropylidene)bis(phthalic anhydride), 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride and 4,4′‐(4,4′‐hexafluoroisopropylidenediphenoxy)bis(phthalic anhydride), were synthesized and compared with regard to their thermal, mechanical and gas permeation properties. All these polymers showed high thermal stability with initial decomposition temperature in the range 475–525 °C and glass transition temperature between 208 and 286 °C. Also, the polymer films presented good mechanical characteristics with tensile strength in the range 60–91 MPa and storage modulus in the range 1700–2375 MPa. The macromolecular chain packing induced by dianhydride and diamine segments was investigated by examining gas permeation through the polymer films. The relationships between chain mobility and interchain distance and the obtained values for gas permeability are discussed. © 2014 Society of Chemical Industry  相似文献   

16.
BACKROUND: Polyimide films coated on copper are a potential new substrate for fabricating printed circuit boards; however, adhesion between the copper and polyimide films is often poor. The relations between residual stress and adhesion strength according to the development of molecular orientation of polyimide films with different chemical backbone structure coated on copper were studied. RESULTS: The effect of chemical structures on properties including the residual stress and the adhesion strength were widely investigated for four different polyimides. Diamine 4,4′‐oxydianiline (ODA) and dianhydrides 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA), 4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) were used to synthesize polyimide. In an attempt to quantify the interaction of thermal mismatch with the polyimide films depending on various structures, residual stress experiments between polyimide film and Cu? Si wafer were carried out over a range of 25–400 °C using in situ thin film stress analysis. A universal test machine was used to conduct 180° peel test (ASTM D903‐98) of polyimide film from cooper foil. The residual stress on Cu? Si (100) wafer decreased in the order 6FDA‐ODA > BTDA‐ODA > ODPA‐ODA > PMDA‐ODA, and the interfacial adhesion strength decreased in the order BTDA‐ODA (5 N mm?2) > ODPA‐ODA > PMDA‐ODA > 6FDA‐ODA. The results may suggest that the morphological structure, degree of crystallinity of chain orientation and packing significantly relate to the residual stress and adhesion strength in polyimide films. Wide‐angle X‐ray diffraction was used for characterizing the molecular order and orientation and X‐ray photoelectron spectroscopy was used for the analysis of components on copper after polyimide films were detached to confirm the existence of copper oxide chemical bonding and to measure the binding energy of elements on the copper surface. CONCLUSION: In this research, it is demonstrated that BTDA‐ODA polyimide has a low residual stress to copper, good adhesion property, good thermal property and low dielectric constant. Therefore, BTDA‐ODA would be expected to be a promising candidate for a two‐layer copper‐clad laminate. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
Reaction of 5‐amino‐1‐naphthol with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) afforded aromatic diols with preformed imide structure. High temperature solution polycondensation reactions of the obtained diimide‐dinaphthols with aromatic and aliphatic diacid chlorides resulted in the preparation of nine different poly(ester‐imide)s. These were fully characterized, and the physical and thermal properties of the obtained polymer were studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2567–2572, 2003  相似文献   

18.
A novel aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,4,5‐trifluorophenyl)‐2,2,2‐trifluoroethane, containing a pendant polyfluorinated phenyl group, a trifluoromethyl group, and methyl groups ortho‐substituted to the amino groups in the structure was synthesized and characterized. The diamine was polymerized with several aromatic dianhydrides, including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature one‐step procedure to afford four polyimides (PIs) with inherent viscosities of 0.47–0.70 dL/g. The PIs exhibited excellent solubilities in a variety of organic solvents. They were soluble not only in polar aprotic solvents but in many common solvents, such as cyclopentanone, tetrahydrofuran, and even toluene at room temperature. The tough and flexible PI films cast from the PI solutions exhibited good thermal stabilities and acceptable tensile properties. The glass‐transition temperatures were in the range 312–365°C, and the 5% weight loss temperatures were all higher than 480°C in nitrogen. The films had tensile strengths in the range 76–99 MPa, tensile moduli of 2.2–2.8 GPa, and elongations at break of 5–8%. In addition, the PI films exhibited excellent transparency in the visible light region with cutoff wavelength as low as 302 nm and transmittance higher than 88% at the wavelength of 450 nm. The PI films showed low dielectric constants ranging from 2.50–2.68 and low moisture absorptions of less than 0.56%. The good combined properties of the PIs mainly resulted from the synergic effects of the different substituents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A novel diimidodialcohol monomer, 1,4‐bis[2′‐trifluoromethyl‐4′‐(4″‐glycolformate)‐ trimellitimidophenoxy]benzene (BGTB), was synthesized and characterized. It was reacted with isophthalic acid, maleic anhydride and propylene glycol to produce a novel unsaturated poly(ester‐imide) (BGTB‐UPEI) with imide and trifluoromethyl groups in the polymer backbone. The BGTB‐UPEI resin was diluted with reactive monomer (styrene) to give a low‐viscous poly(ester‐imide)/styrene (BGTB‐UPEI/St) mixed solution, which was then thermally cured to yield thermosetting BGTB‐UPEI/St composite. The effect of processing parameters such as the curing temperature and curing time, reactive monomer concentration and initiator amount on the curing reaction was systematically investigated. Experimental results indicated that the thermally cured BGTB‐UPEI/St composite exhibited much better thermal, mechanical, electrical insulating properties and chemical resistance than the standard unsaturated polyester/polystyrene composite. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Fluorine‐containing copolybenzoxazines were successfully prepared by reacting bisphenol‐AF/aniline‐based benzoxazine resin (BAF‐a) with 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride (6FDA) in N,N‐dimethylacetamide solvent. The dielectric and thermal properties as well as flexibility of the resulting copolymer films were investigated. The incorporation of fluorine groups into polybenzoxazine was found to substantially decrease the dielectric constant of the resulting copolybenzoxazine to as low as 2.6. The formation of ester linkages between the hydroxyl groups in the poly(BAF‐a) and the carbonyl groups in the 6FDA resulted in substantially enhanced flexibility of the copolybenzoxazines. Moreover, the copolymers showed superior degradation temperature and significant improvement in char yield, up to 464 °C and 56%, respectively. The glass‐transition temperature of the copolybenzoxazines was increased with increasing dianhydride content and exhibited a maximum value of 290 °C at 2.5/1 mole ratio of poly(BAF‐a) to 6FDA. Therefore, the fluorine‐containing dianhydride‐modified polybenzoxazines are appropriate for applications as polymeric films for coatings and as a good electrical insulation material with high thermal resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45204.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号