首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
以电解二氧化锰(EMD)和LiOH·H2O为原料,采用固相反应法制备出锂锰复合氧化物(CDMO);采用X射线衍射对EMD和CDMO的晶体结构进行了表征;以CDMO为活性物质制备正极组装试验电池,研究了试验电池的循环可充性.结果表明,在375℃下热处理8h的EMD合成的CDMO具有良好的电化学性能.  相似文献   

2.
利用固相反应法由热处理过的电解二氧化锰与LiOH·H2O的混合物制备锂锰复合物(CDMO),采用热分析研究了温度对γ-β-MnO2与LiOH·H2O混合物发生固相反应的影响,采用X射线衍射对二氧化锰和CDMO的晶体结构进行了表征,并将CDMO制成正极组装电池对其进行了恒电流充放电性能测试.研究结果表明,用该方法制备的CDMO有较好的充放电循环性能.  相似文献   

3.
锂离子电池正极材料锂锰氧化物的研究进展   总被引:4,自引:0,他引:4  
综述了近几年锂离子电池正极材料锂锰氧化物的研究进展。着重介绍了 3种方法制备的锂锰氧尖晶石材料及其电化学性能 ,另外对层状结构O2型锂锰氧化物的合成及电化学性能也作了较为详细的介绍  相似文献   

4.
富锂锰基正极材料xLi2MnO3·(1-x)LiMO2具有高比容量(200~300mAh/g),能很好地满足锂电池在小型电子产品和电动汽车等领域的使用要求,是最具潜力的下一代动力锂离子电池正极材料。介绍了富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构特征及其充放电机理;总结了这类材料的合成方法以及改性方法;揭示了该材料的研究现状和亟待解决的问题;并展望了其今后的发展方向。  相似文献   

5.
层状锂锰氧化物作为锂离子电池的正极材料,具有无毒、低成本、能量密度高等优点.综述了近年来锂离子电池层状正极材料的研究进展,主要讨论了层状锂锰氧化物掺杂改性对其结构和电化学性能的影响,以及多元复合材料LiMnxCoyNi1-x-yO2的结构特性、制备方法、各金属元素含量的变化对其电性能的影响.  相似文献   

6.
程杰锋  李嵩  季世军  孙俊才  宋伟 《功能材料》2002,33(3):298-299,302
以聚丙烯酸为载体通过溶胶凝胶法合成纳米级尖晶石结构的锂离子电池正极材料LixMn2O4(1<x<1.12).讨论锂锰摩尔比、烧结温度对产物结构的影响.此外,改进了传统烧结方法,对烧结产物进行回火处理.实验结果表明,烧结温度为550℃时晶化完全,结构完整;当锂锰比为1.082时性能较佳,初始容量为125mAh/g;回火可改善LixMn2O4材料的性能.  相似文献   

7.
层状锂锰氧化物作为锂离子电池的正极材料,具有无毒、低成本、能量密度高等优点。综述了近年来锂离子电池层状正极材料的研究进展,主要讨论了层状锂锰氧化物掺杂改性对其结构和电化学性能的影响,以及多元复合材料LiMnxCoyNi1-x-yO2的结构特性、制备方法、各金属元素含量的变化对其电性能的影响。  相似文献   

8.
可充碱锰电池循环容量衰降探因   总被引:2,自引:0,他引:2  
通过单电极放电曲线测试、X射线衍射分析、SEM分析等方法,研究了可充碱锰电池循环容量衰降的原因,并对可充碱锰电池容量衰降的立导因素及各因素之间的内在原因进行了分析.结果表明:可充碱锰电池的循环性能下降主要由负极造成;MnO2电极容量衰降的主要原因是水合锌黑锰石Zn2Mn4O8@H2O和KMnO2在正极中的形成和积累,以及正极的机械失效;Zn电极容量衰降的主要原因是锌粉颗粒聚集结块,以及负极区的电液干涸.  相似文献   

9.
富锂锰(Li2MnO3)材料由四氧化三锰(Mn3O4)和碳酸锂(Li2CO3)按化学计量比经固相法制备。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对反应产物检测。结果表明:Li2MnO3产物不含杂质,其结晶度良好,是片状球形材料。Li2MnO3在锂离子电池中作为正极材料时,以双草酸硼酸锂(LiBOB)为锂盐的电解液比常规的磷酸铁锂(LiPF6)电解液表现出更稳定的循环性能和良好的倍率性能。  相似文献   

10.
锂离子电池因具有能量密度高、循环寿命长、自放电率小和环境污染小等优点,目前成为能源设备领域使用占比最多的一类电化学储能电池.正极材料作为锂离子电池中Li+的主要提供者,其研发始终受到科技工作者的广泛关注.其中,富锂锰基正极材料具有高比容量、高电压和优异的高温性能等优点,被视为极具潜力的正极材料.然而,富锂锰基正极材料在工作中存在稳定性不好的问题,例如富锂锰材料在充放电循环过程中容易发生锂镍混排,导致层状结构坍塌,影响材料性能,进而使得此类正极材料的应用前景受限.因此,近些年研究者对富锂锰基正极材料进行大量改性研究,并获得优异的成果.在所有的改性方法中,离子掺杂改性由于其特殊的机理,成为改性方法中较佳的选择.目前,富锂锰基正极材料离子掺杂的主要形式包括阳离子掺杂、阴离子掺杂、聚阴离子掺杂和共掺杂.阳离子掺杂是现阶段最为常见的掺杂形式,其主要是在过渡金属位置进行掺杂,少部分在Li位进行掺杂.阳离子掺杂能够抑制过渡金属离子向锂层迁移,减缓尖晶石相生成,提高富锂锰基正极材料结构的稳定性.阴离子掺杂主要是弥补和替换充电过程中形成的氧空位,该方法能够抑制氧空位形成,提高正极材料的安全性和库伦效率.聚阴离子掺杂与阴离子掺杂相似,同样是在正极材料的氧位进行掺杂,由于聚阴离子与过渡金属的结合能更强,过渡金属迁移被抑制,层状结构更加稳固,材料性能显著提升.共掺杂是将阳离子和阴离子同时掺杂到正极材料中,该方法具备阴、阳离子单独掺杂时的效果,可以稳定层状结构,并能显著提高正极材料的循环稳定性,提高电池的循环能力.本文总结了富锂锰基正极材料的结构组成、反应机理以及自身存在的缺陷,重点讨论了阳离子掺杂、阴离子掺杂、聚阴离子掺杂和共掺杂等掺杂方法对富锂锰基正极材料性能的影响,分析了现阶段掺杂改性仍存在的问题并展望其未来研究方向,以期为制备稳定和高性能的富锂锰基正极材料提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号