首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A pilot-scale multi-staged UASB (MS-UASB) reactor with a working volume of 2.5 m3 was operated for thermophilic (55 degrees C) treatment of an alcohol distillery wastewater for a period of over 600 days. The reactor steadily achieved a super-high rate COD removal, that is, 60 kgCOD m(-3) d(-1) with over 80% COD removal. However, when higher organic loading rates were further imposed upon the reactor, that is, above 90 kgCOD m(-3) d(-1) for barely-based alcohol distillery wastewater (ADWW) and above 100 kgCOD m(-3) d(-1) for sweet potato-based ADWW, the reactor performance somewhat deteriorated to 60 and 70% COD removal, respectively. Methanogenic activity (MA) of the retained sludge in the thermophilic MS-UASB reactor was assessed along the time course of continuous run by serum-vial test using different substrates as a vial sole substrate. With the elapsed time of continuous run, hydrogen-utilizing MA, acetate-utilizing MA and propionate-fed MA increased at maximum of 13.2, 1.95 and 0.263 kgCOD kgVSS(-1) d(-1), respectively, indicating that propionate-fed MA attained only 1/50 of hydrogen-utilizing MA and 1/7 of acetate-utilizing MA. Since the ADWW applied herewith is a typical seasonal campaign wastewater, the influence of shut-down upon the decline in sludge MA was also investigated. Hydrogen-utilizing MA and acetate-utilizing MA decreased slightly by 3/4, during a month of non-feeding period, whereas propionate-fed MA were decreased significantly by 1/5. Relatively low values of propionate-fed MA and its vulnerability to adverse conditions suggests that the propionate degradation step is the most critical bottleneck of overall anaerobic degradation of organic matters under thermophilic condition.  相似文献   

2.
The objective of this study was to investigate the performance of the upflow anaerobic sludge blanket (UASB) reactor as the pretreatment system for silk-dyeing wastewater. Two laboratory-scale UASB reactors, with working volume of 15.59 I, were used during May 1998 to June 1999. The actual wastewater was diluted to reduce ammonium ion toxicity on anaerobic bacteria. The experiments were conducted at the organic loading rates (OLRs) of 0.52, 1.01, 1.04, 1.54 and 2.56 kgCOD/(m3 x d), treating only wastewater generated from the acid-dye process of mixed-species raw silk. It took approximately 4 1/2 months to reach the steady-state conditions. It was found that the COD removal was in the ranges of 74.1-85.3%, except at OLR 2.56 kgCOD/(m3 x d) where efficiency significantly dropped to 55.2%. The apparent color removal was in the similar trend as COD. During the study periods, wastewater input had various color shades while the effluent generally looked pale yellowish. The methane generation rates ranged from 0.18-0.31 m3/kg COD removed, with methane composition 81.0-88.1% in biogas. The average granule size in the sludge bed had slowly increased to 0.73 mm in the last experiment. It can be concluded that the UASB reactor is suitable as a pretreatment system for silk-dyeing wastewater. An OLR of 1 kgCOD/(m3 x d) and an influent concentration diluted to 2,600 mgCOD/l are suggested while COD and apparent color removal efficiency of 80% and 70%, respectively, can be expected.  相似文献   

3.
The treatment of winery wastewater was performed at full-scale applying a two-stage fixed bed biofilm reactor (FBBR) system for the discharge in the sewerage. The results of the first year of operation at the full-scale plant are presented. Values of removed organic loads and effluent concentrations were interpreted on the basis of the COD fractionation of influent wastewater assessed through respirometric tests. The average removal efficiency of total COD was 91 %. It was not possible to reach an higher efficiency because of the unbiodegradable soluble fraction of COD (about 10% of total COD on average during the whole year), that cannot be removed by biological process or settling. Due to the high empty space offered by the plastic carriers, FBBRs did not require backwashing during the seasonal operationing period of the plant (September-March). In comparison with other treatment systems the FBBR configuration allows one to ensure a simple management, to obtain high efficiency also in the case of higher fluctuations of flow and loads and to guarantee a good settleability of the sludge, without bulking problems.  相似文献   

4.
Nitrogen removal in wastewater stabilization ponds is poorly understood and effluent monitoring data show a wide range of differences in ammonium. For effluent discharge into the environment, low levels of nitrogen are recommended. Nitrification is limiting in facultative wastewater stabilization ponds. The reason why nitrification is considered to be limiting is attributed to low growth rate and wash out of the nitrifiers. Therefore to maintain a population, attached growth is required. The aim of this research is to study the relative contribution of bulk water and biofilms with respect to nitrification. The hypothesis is that nitrification can be enhanced in stabilization ponds by increasing the surface area for nitrifier attachment. In order to achieve this, transparent pond reactors representing water columns in algae WSP have been used. To discriminate between bulk and biofilm activity, 5-day batch activity tests were carried out with bulk water and biofilm sampled. The observed value for Rnitrbulk was 2.7 x 10(-1) mg-N L(-1) d(-1) and for Rbiofilm was 1,495 mg-N m(-2) d(-1). During the 5 days of experiment with the biofilm, ammonia reduction was rapid on the first day. Therefore, a short-term biofilm activity test was performed to confirm this rapid decrease. Results revealed a nitrification rate, Rbiofilm, of 2,125 mg-N m(-2) d(-1) for the first 5 hours of the test, which is higher than the 1,495 mg-N m(-2) d(-1), observed on the first day of the 7-day biofilm activity test. Rbiofilm and Rnitrbulk values obtained in the batch activity tests were used as parameters in a mass balance model equation. The model was calibrated by adjusting the fraction of the pond volume and biofilm area that is active (i.e. aerobic). When assuming a depth of 0.08 m active upper layer, the model could describe well the measured effluent values for the pond reactors. The calibrated model was validated by predicting effluent Kjeldahl nitrogen of algae ponds in Palestine and Colombia. The model equation predicted well the effluent concentrations of ponds in Palestine.  相似文献   

5.
Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SW(CO2)) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L(-1) of phenol, p-cresol and o-cresol, respectively. The mixture was teated anaerobically in an EGSB reactor fed with 1.5 gCOD L(-1) d(-1), without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L(-1) d(-1). The mixture SC/SWco2 added to the phenol load, was step increased from 0.10 to 0.87 gCODL(-1) d(-1) maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.  相似文献   

6.
Reetha (Sapindus trifoliata) seed extract and Chitosan were used as additives in the sludge bed of a UASB reactor treating low strength wastewater to enhance granulation. Five parallel laboratory scale UASB reactors were operated for 250 days with synthetic wastewater feed containing COD in the range of 600-800 mg/L. The reactors were seeded with spent sludge from a full-scale 5MLD UASB treatment plant at Jajmau, Kanpur, India. The seed sludge contained little or no granules. Different additives in the five reactors were as follows: control with no additive, cationic part of Reetha extract as additive, anionic part of Reetha extract as additive, bulk Reetha extract as additive and Chitosan as additive. The granulation rapidly increased in all the reactors beyond the 90th day of operation. The mean granule sizes as well as the fraction of granular sludge (particle size > or = 100 microm) were more in the presence of some of the additives compared to the control reactor. Chitosan significantly enhanced granulation followed by the cationic and anionic fractions of the Reetha extract. The bulk Reetha extract did not show enhancement of granulation. The ESEM/EDAX results showed that the bigger granules (3-4 mm) had porous structure and appeared as conglomerates of smaller granules.  相似文献   

7.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

8.
Treatment of swine wastewater containing strong nitrogen was attempted in a full-scale SBR. The strongest swine wastewater was discharged from a slurry-type barn and called swine-slurry wastewater (SSW). Slightly weaker wastewater was produced from a scraper-type barn and called swine-urine wastewater (SUW). TCOD, NH4+-N and TSS in raw SSW were 23,000-72,000 mg/L, 3,500-6,000 mg/L and 17,000-50,000 mg/L, respectively. A whole cycle of SBR consists of 4 sub-cycles with anoxic period of 1 hr and aerobic period of 3 hr. The maximum loading rates of both digested-SSW and SUW were similar to 0.22 kg NH4+-N/m3/day whereas the maximum loading rates of raw SSW was up to 0.35 TN/m3/day on keeping the effluent quality of 60 TN mg/l. The VFAs portion of SCOD in raw SSW was about more than 60%. The VFAs in SUW and digested-SSW were about 22% and 15%, respectively. NH4+-N and PO4(3-)-P in SSW were removed efficiently compared to those in digested-SSW and DUW because SSW had high a C/N ratio and readily biodegradable organic. High concentration of organic was useful to enhance denitrification and P uptake. Also the amount of external carbon for denitrification was reduced to 5% and 10% of those for digested-SSW and SUW.  相似文献   

9.
膜生物反应器处理食品废水的工程应用   总被引:1,自引:0,他引:1  
介绍了MBR处理食品废水的工程效果。并在长期跟踪反应器跨膜阻力的基础上,重点探讨了膜离线和在线化学清洗的方法及结果,指出离线和在线化学清洗是控制和消除膜有机污染和无机污染的有效手段。离线化学清洗可以基本消除膜丝内表面的污染,对于膜丝外表面的污染也具有显著效果。  相似文献   

10.
对UASB反应器在中温下处理VC废水的工艺流程和设备进行了合理的改进,在容积为300 m3的UASB反应器中,以出水回流与高浓度废水混合稀释降低进水CODCr.生产运行效果表明,该工艺提高了进水的总碱度,同时控制反应器水力负荷,提高了反应器的处理能力,并节省了调节pH的用碱量约2 t/d和稀释水约230 m3/d.  相似文献   

11.
Post-treatment of an UASB reactor effluent, fed with domestic sewage, was conducted using two-stage flotation and UV disinfection. Results were compared to those obtained in a parallel stabilisation pond. The first flotation stage employed 5 - 7.5 mg L(-1) cationic flocculant to separate off more than 99% of the suspended solids. Then, phosphate ions were completely recovered using carrier flotation with 5-25 mg L(-1) of Fe (FeCl3) at pH 6.3-7.0. This staged flotation led to high recoveries of water and allowed us to separate organic matter and phosphate bearing sludge. The water still contained about 1 x 10(2) NMP/100 mL total coliforms, which were removed using UV radiation to below detection levels. Final water turbidity was < 1.0 NTU, COD < 20 mg L(-1) O2 and 71 mNm(-1), the liquid/air interfacial tension. This flotation-UV flowsheet was found to be more efficient than the treatment in the stabilisation pond and appears to have some potential for water reuse. Results were discussed in terms of the biological, chemical and physicochemical mechanisms involved.  相似文献   

12.
Polyacrylonitrile (PAN) is one of the major synthetic fibers commonly used in the mass production of clothing. The chemical synthesis of PAN is carried out by polymerization of the acrylonitrile (AN) monomers with co-monomers such as vinyl acetate, methyl acrylate and cyclohexyl acrylate. Using water quality analysis of the PAN wastewater, high concentration of organic nitrogen was found and the TKN/COD ratios achieved were 0.15-0.26, indicating the complicated biodegradation characteristics for the PAN wastewater. In order to enhance biodegradation of nitrogenous compounds in PAN wastewater, a combined three-stage process of thermophilic anaerobic/anoxic denitrification/aerobic nitrification fluidized bed reactors was employed. The results indicated that the concentration of effluent in the three-stage process of OD and organic nitrogen was 175 mg/L and 13 mg/L, respectively. Furthermore, molecular biotechnology was applied to study the microbial population in the thermophilic anaerobic fluidized bed reactor. From the results of denaturing gradient gel electrophoresis, the diversity of PAN-degrading bacteria would change in different volumetric loading. Furthermore, the bacteria communities in the thermophilic anaerobic fluidized bed reactor were also studied by fluorescence in situ hybridization and confocal laser scanning microscopy. Alpha and delta-Proteobacteria were dominant in the bacteria population, and some high G+C content bacteria and Clostridium could be characterized in this system.  相似文献   

13.
This work presents the results of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, a mixture of municipal wastewater and different concentrations of phenol when used as a toxic compound model. The influent is fed into the reactor in such a way to obtain the maximal degradation rate avoiding the inhibition of the microorganisms. Such an optimal strategy was able to manage increments of phenol concentrations in the influent up to 7000 mg/L without any problem. It was shown that the optimally controlled influent flow rate strategy is a good and reliable tool when a discontinuous reactor is applied to degrade an industrial wastewater.  相似文献   

14.
The performance of an upflow anaerobic sludge blanket (UASB) reactor and a hybrid UASB-filter reactor was investigated and compared for the treatment of domestic wastewater at different operational temperatures (28, 20, 14 and 10 degrees C) and loading rates. For each temperature studied a constant CODt removal was observed as long as the upflow velocity was lower than 0.35 m/h. At these upflow velocities similar removals were observed for both reactor types at 28 and 20 degrees C, 82 and 72% respectively. However, at 14 and 10 degrees C the UASB reactor showed a better COD removal (70% and 48%, respectively) than the hybrid reactor (60% and 38%). COD removal resulted from biological degradation and solids accumulation in the reactors. At 28 degrees C, a constant 200 g sludge mass was observed in both reactors and COD removal was attributed to biological degradation only. At lower temperatures, solids accumulation was observed in addition to biological degradation with an increase in reactor sludge as the temperature decreased. The decrease in biological degradation at lower temperatures was offset by solids accumulation and explains the similar overall COD removal efficiency observed at 28 degrees C, 20 degrees C and 14 degrees C. The decrease in temperature was also followed by an increase in the effluent TSS concentration in both reactors. At 14 and 10 degrees C a lower effluent TSS concentration and better performance was observed in the UASB reactor.  相似文献   

15.
Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be < 1 hour. A cationic polymer combined with iron is used as coagulant at low dosages (i.e. 1-2 mg polymer/l, 5-10 mg Fe/l) resulting in low sludge production (compared to conventional chemical treatment) and sufficient P-removal.  相似文献   

16.
The combination of microbial reduction and further microbial oxidation of iron was applied to the treatment of food-processing wastewater and recovery of ammonium. Fe2+ ions were formed by iron-reducing bacteria under anaerobic conditions. Ammonium was recovered by co-precipitation with negatively charged iron hydroxides produced during oxidation of Fe2+ by iron-oxidizing bacteria under microaerophilic conditions. The value-added by-product of this process can be used as a slowly released ammonium fertilizer.  相似文献   

17.
A proof of concept was performed in order to verify if the coupling of anaerobic and aerobic conditions inside the same digester could efficiently treat a reconstituted whey wastewater at 21 degrees C. The sequencing batch reactor (SBR) cycles combined initial anaerobic phase and final aerobic phase with reduced aeration. A series of 24 h cycles in 0.5 L digesters, with four different levels of oxygenation (none, 54, 108 and 182 mgO2 per gram of chemical oxygen demand (COD)), showed residual soluble chemical oxygen demand (sCOD) of 683 +/- 46, 720 +/- 33, 581 +/- 45, 1239 +/- 15 mg L(-1), respectively. Acetate and hydrogen specific activities were maintained for the anaerobic digester, but decreased by 10-25% for the acetate and by 20-50% for the hydrogen, in the coupled digesters. The experiment was repeated using 48 h cycles with limited aeration during 6 or 16 hours at 54 and 108 mgO2gCODinitial(-1), displaying residual sCOD of 177 +/- 43, 137 +/- 38, 104 +/- 22 and 112 +/- 9 mgL(-1) for the anaerobic and the coupled digesters, respectively. The coupled digesters recovered after a pH shock with residual sCOD as low as 132 mg L(-1) compared to 636 mg L(-1) for the anaerobic digester. With regard to the obtained results, the feasibility of the anaerobic-aerobic coupling in SBR digesters for the treatment of whey wastewater was demonstrated.  相似文献   

18.
Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.  相似文献   

19.
The sequencing batch reactor (SBR) process concept was applied to achieve efficient ammonium removal via nitrite under both laboratory and pilot-scale conditions. Both sets of experimental results show that without pH control or carbon addition the nitritation process consistently converted approximately 50% of the ammonium from biosolids dewatering liquids to nitrite with hydraulic retention times (HRT) as short as 10 h. The results from the pilot-scale study also indicate that the selective oxidation of ammonium to nitrite is a reliable process as the accumulation of nitrate was never an issue during a 330-day trial. The SBR process concept was extended to achieve complete nitrogen removal through nitritation and denitritation in the laboratory scale. The experimental results indicate that a total reduction of 96-98% of the ammonium nitrogen from biosolids dewatering liquids (influent concentration typically 1,200 g m(-3)) was achieved with a short HRT of 1.1 d and a removal rate of 1.05 kgNm(-3)d(-1). This process concept was tested at pilot scale where the nitritation process could be started up without temperature control in a short period of time. Nitrogen removal rates up to 1.2 kgNm(-3)d(-1) at an HRT of 0.88 d have been obtained. COD to nitrogen ratios required in the pilot plant were consistently in the range 1.6-1.9 kgCOD kg(-1)N removed.  相似文献   

20.
Many dairy industries have been using SBR wastewater treatment plants because they allow optimal working condition to be reached. However, to take advantage of SBR capabilities, strong process automation is needed. The aim of this work is to study the factors that influence SBR performance to improve modelling and control. To better understand the whole process we studied the kinetic modelling, the carbon removal mechanism and the relation between reactor performance, aerobic heterotrophic activity and bacterial population dynamics (by terminal restriction fragment length polymorphisms of 16S rDNA, T-RFLP). The heterotrophic activity values presented high variability during some periods; however, this was not reflected on the reactor performance. As sludge health indicator, the average activity in a period was better than individual values. Although all the carbon removal mechanisms are still unclear for this process, they seemed to be influenced by non-respirometric ways (storage, biosorption, accumulation, etc.). The variability of heterotrophic activity could be correlated with the bacterial population diversity over time. Despite the high variability of the activity, a simple kinetic model (pseudo ASM1) based on apparent constant parameters was developed and calibrated. Such modellisation provided a good tool for control purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号