共查询到20条相似文献,搜索用时 31 毫秒
1.
Keke Tang Peng Song Xiaofei Wang Bailin Deng Chi‐Wing Fu Ligang Liu 《Computer Graphics Forum》2019,38(2):291-303
Dissection puzzles require assembling a common set of pieces into multiple distinct forms. Existing works focus on creating 2D dissection puzzles that form primitive or naturalistic shapes. Unlike 2D dissection puzzles that could be supported on a tabletop surface, 3D dissection puzzles are preferable to be steady by themselves for each assembly form. In this work, we aim at computationally designing steady 3D dissection puzzles. We address this challenging problem with three key contributions. First, we take two voxelized shapes as inputs and dissect them into a common set of puzzle pieces, during which we allow slightly modifying the input shapes, preferably on their internal volume, to preserve the external appearance. Second, we formulate a formal model of generalized interlocking for connecting pieces into a steady assembly using both their geometric arrangements and friction. Third, we modify the geometry of each dissected puzzle piece based on the formal model such that each assembly form is steady accordingly. We demonstrate the effectiveness of our approach on a wide variety of shapes, compare it with the state‐of‐the‐art on 2D and 3D examples, and fabricate some of our designed puzzles to validate their steadiness. 相似文献
2.
This paper presents subdivision schemes with subdivision stencils near an extraordinary vertex that are free from or with substantially reduced polar artifact in extraordinary regions while maintaining the best possible bounded curvature at extraordinary positions. The subdivision stencils are firstly constructed to meet tangent plane continuity with bounded curvature at extraordinary positions. They are further optimized towards curvature continuity at an extraordinary position with additional measures for removing or for minimizing the polar artifact in extraordinary regions. The polar artifact for subdivision stencils of lower valences is removed by applying an additional constraint to the subdominant eigenvalue to be the same as that of subdivision at regular vertices, while the polar artifact for subdivision stencils of higher valances is substantially reduced by introducing an additional thin‐plate energy function and a penalty function for maintaining the uniformity and regularity of the characteristic map. A new tuned subdivision scheme is introduced by replacing subdivision stencils of Catmull‐Clark subdivision with that from this paper for extraordinary vertices of valences up to nine. We also compare the refined meshes and limit surface quality of the resulting subdivision scheme with that of Catmull‐Clark subdivision and other tuned subdivision schemes. The results show that subdivision stencils from our method produce well behaved subdivision meshes with the least polar artifact while maintaining satisfactory limit surface quality. 相似文献
3.
Fused deposition modeling based 3D‐printing is becoming increasingly popular due to it's low‐cost and simple operation and maintenance. While it produces rugged prints made from a wide range of materials, it suffers from an inherent printing limitation where it cannot produce overhanging surfaces of non‐trivial size. This limitation can be handled by constructing temporary support‐structures, however this solution involves additional material costs, longer print time, and often a fair amount of labor in removing it. In this paper we present a new method for partitioning general solid objects into a small number of parts that can be printed with no support. The partitioning is computed by applying a sequence of cutting‐planes that split the object recursively. Unlike existing algorithms, the planes are not chosen at random, rather they are derived from shape analysis routines that identify and resolve various commonly‐found geometric configurations. In addition, we guide this search by a revised set of conditions that both ensure the objects' printability as well as realistically model the printing capabilities of the printer at hand. Evaluation of the new method demonstrates its ability to efficiently obtain support‐free partitionings typically containing fewer parts compared to existing methods that rely on support‐structures. 相似文献
4.
In this work, we introduce multi‐column graph convolutional networks (MGCNs), a deep generative model for 3D mesh surfaces that effectively learns a non‐linear facial representation. We perform spectral decomposition of meshes and apply convolutions directly in the frequency domain. Our network architecture involves multiple columns of graph convolutional networks (GCNs), namely large GCN (L‐GCN), medium GCN (M‐GCN) and small GCN (S‐GCN), with different filter sizes to extract features at different scales. L‐GCN is more useful to extract large‐scale features, whereas S‐GCN is effective for extracting subtle and fine‐grained features, and M‐GCN captures information in between. Therefore, to obtain a high‐quality representation, we propose a selective fusion method that adaptively integrates these three kinds of information. Spatially non‐local relationships are also exploited through a self‐attention mechanism to further improve the representation ability in the latent vector space. Through extensive experiments, we demonstrate the superiority of our end‐to‐end framework in improving the accuracy of 3D face reconstruction. Moreover, with the help of variational inference, our model has excellent generating ability. 相似文献
5.
We propose a novel approach for shape matching between triangular meshes that, in contrast to existing methods, can match crease features. Our approach is based on a hybrid optimization scheme, that solves simultaneously for an elastic deformation of the source and its projection on the target. The elastic energy we minimize is invariant to rigid body motions, and its non‐linear membrane energy component favors locally injective maps. Symmetrizing this model enables feature aligned correspondences even for non‐isometric meshes. We demonstrate the advantage of our approach over state of the art methods on isometric and non‐isometric datasets, where we improve the geodesic distance from the ground truth, the conformal and area distortions, and the mismatch of the mean curvature functions. Finally, we show that our computed maps are applicable for surface interpolation, consistent cross‐field computation, and consistent quadrangular remeshing of a set of shapes. 相似文献
6.
In the field of global surface parametrization a recent focus has been on so‐called seamless parametrization. This term refers to parametrization approaches which, while using an atlas of charts to enable the handling of surfaces of arbitrary topology, relate the parametrization across the cuts between charts via transition functions from special classes of transformations. This effectively makes the cuts invisible to applications which are invariant to these specific transformations in some sense. In actual implementations of these parametrization approaches, however, these restrictions are obeyed only approximately; errors stem from the tolerances of numerical solvers employed and, ultimately, from the limited accuracy of floating point arithmetic. In practice, robustness issues arise from these flaws in the seamlessness of a parametrization, no matter how small. We present a robust global algorithm that turns a given approximately seamless parametrization into an exactly seamless one ‐ that still is representable by standard floating point numbers. It supports common practically relevant additional constraints regarding boundary and feature curve alignment or isocurve connectivity, and ensures that these are likewise fulfilled exactly. This allows subsequent algorithms to operate robustly on the resulting truly seamless parametrization. We believe that the core of our method will furthermore be of benefit in a broader range of applications involving linearly constrained numerical optimization. 相似文献
7.
We propose a novel approach for computing correspondences between subdivision surfaces with different control polygons. Our main observation is that the multi‐resolution spectral basis functions that are open used for computing a functional correspondence can be compactly represented on subdivision surfaces, and therefore can be efficiently computed. Furthermore, the reconstruction of a pointwise map from a functional correspondence also greatly benefits from the subdivision structure. Leveraging these observations, we suggest a hierarchical pipeline for functional map inference, allowing us to compute correspondences between surfaces at fine subdivision levels, with hundreds of thousands of polygons, an order of magnitude faster than existing correspondence methods. We demonstrate the applicability of our results by transferring high‐resolution sculpting displacement maps and textures between subdivision models. 相似文献
8.
We introduce an interactive tool for novice users to design mechanical objects made of 2.5D linkages. Users simply draw the shape of the object and a few key poses of its multiple moving parts. Our approach automatically generates a one‐degree‐of freedom linkage that connects the fixed and moving parts, such that the moving parts traverse all input poses in order without any collision with the fixed and other moving parts. In addition, our approach avoids common linkage defects and favors compact linkages and smooth motion trajectories. Finally, our system automatically generates the 3D geometry of the object and its links, allowing the rapid creation of a physical mockup of the designed object. 相似文献
9.
Procedural modeling is used across many industries for rapid 3D content creation. However, professional procedural tools often lack artistic control, requiring manual edits on baked results, diminishing the advantages of a procedural modeling pipeline. Previous approaches to enable local artistic control require special annotations of the procedural system and manual exploration of potential edit locations. Therefore, we propose a novel approach to discover meaningful and non‐redundant good edit locations (GELs). We introduce a bottom‐up algorithm for finding GELs directly from the attributes in procedural models, without special annotations. To make attribute edits at GELs persistent, we analyze their local spatial context and construct a meta‐locator to uniquely specify their structure. Meta‐locators are calculated independently per attribute, making them robust against changes in the procedural system. Functions on meta‐locators enable intuitive and robust multi‐selections. Finally, we introduce an algorithm to transfer meta‐locators to a different procedural model. We show that our approach greatly simplifies the exploration of the local edit space, and we demonstrate its usefulness in a user study and multiple real‐world examples. 相似文献
10.
We consider the problem of non‐rigid shape matching using the functional map framework. Specifically, we analyze a commonly used approach for regularizing functional maps, which consists in penalizing the failure of the unknown map to commute with the Laplace‐Beltrami operators on the source and target shapes. We show that this approach has certain undesirable fundamental theoretical limitations, and can be undefined even for trivial maps in the smooth setting. Instead we propose a novel, theoretically well‐justified approach for regularizing functional maps, by using the notion of the resolvent of the Laplacian operator. In addition, we provide a natural one‐parameter family of regularizers, that can be easily tuned depending on the expected approximate isometry of the input shape pair. We show on a wide range of shape correspondence scenarios that our novel regularization leads to an improvement in the quality of the estimated functional, and ultimately pointwise correspondences before and after commonly‐used refinement techniques. 相似文献
11.
Thibault Lescoat Maks Ovsjanikov Pooran Memari Jean‐Marc Thiery Tamy Boubekeur 《Computer Graphics Forum》2018,37(2):577-601
Dictionaries are very useful objects for data analysis, as they enable a compact representation of large sets of objects through the combination of atoms. Dictionary‐based techniques have also particularly benefited from the recent advances in machine learning, which has allowed for data‐driven algorithms to take advantage of the redundancy in the input dataset and discover relations between objects without human supervision or hard‐coded rules. Despite the success of dictionary‐based techniques on a wide range of tasks in geometric modeling and geometry processing, the literature is missing a principled state‐of‐the‐art of the current knowledge in this field. To fill this gap, we provide in this survey an overview of data‐driven dictionary‐based methods in geometric modeling. We structure our discussion by application domain: surface reconstruction, compression, and synthesis. Contrary to previous surveys, we place special emphasis on dictionary‐based methods suitable for 3D data synthesis, with applications in geometric modeling and design. Our ultimate goal is to enlight the fact that these techniques can be used to combine the data‐driven paradigm with design intent to synthesize new plausible objects with minimal human intervention. This is the main motivation to restrict the scope of the present survey to techniques handling point clouds and meshes, making use of dictionaries whose definition depends on the input data, and enabling shape reconstruction or synthesis through the combination of atoms. 相似文献
12.
13.
In this work we present the first algorithm for restoring consistency between curve networks on non‐parallel cross‐sections. Our method addresses a critical but overlooked challenge in the reconstruction process from cross‐sections that stems from the fact that cross‐sectional slices are often generated independently of one another, such as in interactive volume segmentation. As a result, the curve networks on two non‐parallel slices may disagree where the slices intersect, which makes these cross‐sections an invalid input for surfacing. We propose a method that takes as input an arbitrary number of non‐parallel slices, each partitioned into two or more labels by a curve network, and outputs a modified set of curve networks on these slices that are guaranteed to be consistent. We formulate the task of restoring consistency while preserving the shape of input curves as a constrained optimization problem, and we propose an effective solution framework. We demonstrate our method on a data‐set of complex multi‐labeled input cross‐sections. Our technique efficiently produces consistent curve networks even in the presence of large errors. 相似文献
14.
Semantic surface decomposition (SSD) facilitates various geometry processing and product re‐design tasks. Filter‐based techniques are meaningful and widely used to achieve the SSD, which however often leads to surface either under‐fitting or over‐fitting. In this paper, we propose a reliable rolling‐guided point normal filtering method to decompose textures from a captured point cloud surface. Our method is built on the geometry assumption that 3D surfaces are comprised of an underlying shape (US) and a variety of bump ups and downs (BUDs) on the US. We have three core contributions. First, by considering the BUDs as surface textures, we present a RANSAC‐based sub‐neighborhood detection scheme to distinguish the US and the textures. Second, to better preserve the US (especially the prominent structures), we introduce a patch shift scheme to estimate the guidance normal for feeding the rolling‐guided filter. Third, we formulate a new position updating scheme to alleviate the common uneven distribution of points. Both visual and numerical experiments demonstrate that our method is comparable to state‐of‐the‐art methods in terms of the robustness of texture removal and the effectiveness of the underlying shape preservation. 相似文献
15.
Automatic synthesis of high quality 3D shapes is an ongoing and challenging area of research. While several data‐driven methods have been proposed that make use of neural networks to generate 3D shapes, none of them reach the level of quality that deep learning synthesis approaches for images provide. In this work we present a method for a convolutional point cloud decoder/generator that makes use of recent advances in the domain of image synthesis. Namely, we use Adaptive Instance Normalization and offer an intuition on why it can improve training. Furthermore, we propose extensions to the minimization of the commonly used Chamfer distance for auto‐encoding point clouds. In addition, we show that careful sampling is important both for the input geometry and in our point cloud generation process to improve results. The results are evaluated in an auto‐encoding setup to offer both qualitative and quantitative analysis. The proposed decoder is validated by an extensive ablation study and is able to outperform current state of the art results in a number of experiments. We show the applicability of our method in the fields of point cloud upsampling, single view reconstruction, and shape synthesis. 相似文献
16.
We propose an efficient method for topology‐preserving simplification of medial axes of 3D models. Existing methods either cannot preserve the topology during medial axes simplification or have the problem of being geometrically inaccurate or computationally expensive. To tackle these issues, we restrict our topology‐checking to the areas around the topological holes to avoid unnecessary checks in other areas. Our algorithm can keep high precision even when the medial axis is simplified to be in very few vertices. Furthermore, we parallelize the medial axes simplification procedure to enhance the performance significantly. Experimental results show that our method can preserve the topology with highly efficient performance, much superior to the existing methods in terms of topology preservation, accuracy and performance. 相似文献
17.
We propose a novel framework to generate a global texture atlas for a deforming geometry. Our approach distinguishes from prior arts in two aspects. First, instead of generating a texture map for each timestamp to color a dynamic scene, our framework reconstructs a global texture atlas that can be consistently mapped to a deforming object. Second, our approach is based on a single RGB‐D camera, without the need of a multiple‐camera setup surrounding a scene. In our framework, the input is a 3D template model with an RGB‐D image sequence, and geometric warping fields are found using a state‐of‐the‐art non‐rigid registration method [GXW*15] to align the template mesh to noisy and incomplete input depth images. With these warping fields, our multi‐scale approach for texture coordinate optimization generates a sharp and clear texture atlas that is consistent with multiple color observations over time. Our approach is accelerated by graphical hardware and provides a handy configuration to capture a dynamic geometry along with a clean texture atlas. We demonstrate our approach with practical scenarios, particularly human performance capture. We also show that our approach is resilient on misalignment issues caused by imperfect estimation of warping fields and inaccurate camera parameters. 相似文献
18.
Feature curves on 3D shapes provide important hints about significant parts of the geometry and reveal their underlying structure. However, when we process real world data, automatically detected feature curves are affected by measurement uncertainty, missing data, and sampling resolution, leading to noisy, fragmented, and incomplete feature curve networks. These artifacts make further processing unreliable. In this paper we analyze the global co‐occurrence information in noisy feature curve networks to fill in missing data and suppress weakly supported feature curves. For this we propose an unsupervised approach to find meaningful structure within the incomplete data by detecting multiple occurrences of feature curve configurations (co‐occurrence analysis). We cluster and merge these into feature curve templates, which we leverage to identify strongly supported feature curve segments as well as to complete missing data in the feature curve network. In the presence of significant noise, previous approaches had to resort to user input, while our method performs fully automatic feature curve co‐completion. Finding feature reoccurrences however, is challenging since naïve feature curve comparison fails in this setting due to fragmentation and partial overlaps of curve segments. To tackle this problem we propose a robust method for partial curve matching. This provides us with the means to apply symmetry detection methods to identify co‐occurring configurations. Finally, Bayesian model selection enables us to detect and group re‐occurrences that describe the data well and with low redundancy. 相似文献
19.
Kenshi Takayama 《Computer Graphics Forum》2019,38(2):37-48
The combinatorial dual of a hex mesh induces a collection of mutually intersecting surfaces (dual sheets). Inspired by Campen et al.'s work on quad meshing [CBK12, CK14], we propose to directly generate such dual sheets so that, as long as the volume is properly partitioned by the dual sheets, we are guaranteed to arrive at a valid all‐hex mesh topology. Since automatically generating dual sheets seems much harder than the 2D counterpart, we chose to leave the task to the user; our system is equipped with a few simple 3D modeling tools for interactively designing dual sheets. Dual sheets are represented as implicit surfaces in our approach, greatly simplifying many of the computational steps such as finding intersections and analyzing topology. We also propose a simple algorithm for primalizing the dual graph where each dual cell, often enclosing singular edges, gets mapped onto a reference polyhedron via harmonic parameterization. Preservation of sharp features is simply achieved by modifying the boundary conditions. We demonstrate the feasibility of our approach through various modeling examples. 相似文献
20.
Freeform surfaces whose principal curvature line network is regularly distributed, are essential to many real applications like CAD modeling, architecture design, and industrial fabrication. However, most designed surfaces do not hold this nice property because it is hard to enforce such constraints in the design process. In this paper, we present a novel method for surface fairing which takes a regular distribution of the principal curvature line network on a surface as an objective. Our method first removes the high‐frequency signals from the curvature tensor field of an input freeform surface by a novel rolling guidance tensor filter, which results in a more regular and smooth curvature tensor field, then deforms the input surface to match the smoothed field as much as possible. As an application, we solve the problem of approximating freeform surfaces with regular principal curvature line networks, discretized by quadrilateral meshes. By introducing the circular or conical conditions on the quadrilateral mesh to guarantee the existence of discrete principal curvature line networks, and minimizing the approximate error to the original surface and improving the fairness of the quad mesh, we obtain a regular discrete principal curvature line network that approximates the original surface. We evaluate the efficacy of our method on various freeform surfaces and demonstrate the superiority of the rolling guidance tensor filter over other tensor smoothing techniques. We also utilize our method to generate high‐quality circular/conical meshes for architecture design and cyclide spline surfaces for CAD modeling. 相似文献