首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Market participants and businesses have made tremendous efforts to make the best decisions in a timely manner under varying economic and business circumstances. As such, decision‐making processes based on Financial data have been a popular topic in industries. However, analyzing Financial data is a non‐trivial task due to large volume, diversity and complexity, and this has led to rapid research and development of visualizations and visual analytics systems for Financial data exploration. Often, the development of such systems requires researchers to collaborate with Financial domain experts to better extract requirements and challenges in their tasks. Work to systematically study and gather the task requirements and to acquire an overview of existing visualizations and visual analytics systems that have been applied in Financial domains with respect to real‐world data sets has not been completed. To this end, we perform a comprehensive survey of visualizations and visual analytics. In this work, we categorize Financial systems in terms of data sources, applied automated techniques, visualization techniques, interaction, and evaluation methods. For the categorization and characterization, we utilize existing taxonomies of visualization and interaction. In addition, we present task requirements extracted from interviews with domain experts in order to help researchers design better systems with detailed goals.  相似文献   

2.
The analysis of behavioral city dynamics, such as temporal patterns of visited places and citizens' mobility routines, is an essential task for urban and transportation planning. Social media applications such as Foursquare and Twitter provide access to large‐scale and up‐to‐date dynamic movement data that not only help to understand the social life and pulse of a city but also to maintain and improve urban infrastructure. However, the fast growth rate of this data poses challenges for conventional methods to provide up‐to‐date, flexible analysis. Therefore, planning authorities barely consider it. We present a system and design study to leverage social media data that assist urban and transportation planners to achieve better monitoring and analysis of city dynamics such as visited places and mobility patterns in large metropolitan areas. We conducted a goal‐and‐task analysis with urban planning experts. To address these goals, we designed a system with a scalable data monitoring back‐end and an interactive visual analytics interface. The monitoring component uses intelligent pre‐aggregation to allow dynamic queries in near real‐time. The visual analytics interface leverages unsupervised learning to reveal clusters, routines, and unusual behavior in massive data, allowing to understand patterns in time and space. We evaluated our approach based on a qualitative user study with urban planning experts which demonstrates that intuitive integration of advanced analytical tools with visual interfaces is pivotal in making behavioral city dynamics accessible to practitioners. Our interviews also revealed areas for future research.  相似文献   

3.
Pre‐processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre‐processing pipelines often require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction and the refinement of pre‐processing pipelines, human‐in‐the‐loop approaches are highly beneficial. This particularly applies to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this domain, it has not been subject to in‐depth research in visual analytics. We present a visual‐interactive approach for preprocessing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core analysis tasks related to pre‐processing of multivariate time series. To support these tasks, we identify requirements to baseline toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty‐aware pre‐processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support for data pre‐processing in general and for uncertainty‐aware pre‐processing of multivariate time series in particular.  相似文献   

4.
Data summarization allows analysts to explore datasets that may be too complex or too large to visualize in detail. Designers face a number of design and implementation choices when using summarization in visual analytics systems. While these choices influence the utility of the resulting system, there are no clear guidelines for the use of these summarization techniques. In this paper, we codify summarization use in existing systems to identify key factors in the design of summary visualizations. We use quantitative content analysis to systematically survey examples of visual analytics systems and enumerate the use of these design factors in data summarization. Through this analysis, we expose the relationship between design considerations, strategies for data summarization in visualization systems, and how different summarization methods influence the analyses supported by systems. We use these results to synthesize common patterns in real‐world use of summary visualizations and highlight open challenges and opportunities that these patterns offer for designing effective systems. This work provides a more principled understanding of design practices for summary visualization and offers insight into underutilized approaches.  相似文献   

5.
Information visualization is a rapidly evolving field with a growing volume of scientific literature and texts continually published. To keep abreast of the latest developments in the domain, survey papers and state‐of‐the‐art reviews provide valuable tools for managing the large quantity of scientific literature. Recently, a survey of survey papers was published to keep track of the quantity of refereed survey papers in information visualization conferences and journals. However, no such resources exist to inform readers of the large volume of books being published on the subject, leaving the possibility of valuable knowledge being overlooked. We present the first literature survey of information visualization books that addresses this challenge by surveying the large volume of books on the topic of information visualization and visual analytics. This unique survey addresses some special challenges associated with collections of books (as opposed to research papers) including searching, browsing and cost. This paper features a novel two‐level classification based on both books and chapter topics examined in each book, enabling the reader to quickly identify to what depth a topic of interest is covered within a particular book. Readers can use this survey to identify the most relevant book for their needs amongst a quickly expanding collection. In indexing the landscape of information visualization books, this survey provides a valuable resource to both experienced researchers and newcomers in the data visualization discipline.  相似文献   

6.
Visualization of sentiments and opinions extracted from or annotated in texts has become a prominent topic of research over the last decade. From basic pie and bar charts used to illustrate customer reviews to extensive visual analytics systems involving novel representations, sentiment visualization techniques have evolved to deal with complex multidimensional data sets, including temporal, relational and geospatial aspects. This contribution presents a survey of sentiment visualization techniques based on a detailed categorization. We describe the background of sentiment analysis, introduce a categorization for sentiment visualization techniques that includes 7 groups with 35 categories in total, and discuss 132 techniques from peer‐reviewed publications together with an interactive web‐based survey browser. Finally, we discuss insights and opportunities for further research in sentiment visualization. We expect this survey to be useful for visualization researchers whose interests include sentiment or other aspects of text data as well as researchers and practitioners from other disciplines in search of efficient visualization techniques applicable to their tasks and data.  相似文献   

7.
In this paper, we present a novel illustrative multivariate visualization for geological modelling to assist geologists and reservoir engineers in visualizing multivariate datasets in superimposed representations, in contrast to the single‐attribute visualizations supported by commercial software. Our approach extends the use of decals from a single surface to 3D irregular grids, using the layering concept to represent multiple attributes. We also build upon prior work to augment the design and implementation of different geological attributes (namely, rock type, porosity, and permeability). More specifically, we propose a new sampling strategy to generate decals for porosity on the geological grid, a hybrid visualization for permeability which combines 2D decals and 3D ellipsoid glyphs, and a perceptually‐based design that allows us to visualize additional attributes (e.g., oil saturation) while avoiding visual interference between layers. Furthermore, our visual design draws from traditional geological illustrations, facilitating the understanding and communication between interdisciplinary teams. An evaluation by domain experts highlights the potential of our approach for geological modelling and interpretation in this complex domain.  相似文献   

8.
Cognitive biases are systematic errors in judgment due to an over‐reliance on rule‐of‐thumb heuristics. Recent research suggests that cognitive biases, like numerical anchoring, transfers to visual analytics in the form of visual anchoring. However, it is unclear how visualization users can be visually anchored and how the anchors affect decision‐making. To investigate, we performed a between‐subjects laboratory experiment with 94 participants to analyze the effects of visual anchors and strategy cues using a visual analytics system. The decision‐making task was to identify misinformation from Twitter news accounts. Participants were randomly assigned to conditions that modified the scenario video (visual anchor) and/or strategy cues provided. Our findings suggest that such interventions affect user activity, speed, confidence, and, under certain circumstances, accuracy. We discuss implications of our results on the forking paths problem and raise concerns on how visualization researchers train users to avoid unintentionally anchoring users and affecting the end result.  相似文献   

9.
Digital acquisition and processing techniques are changing the way neuroscience investigation is carried out. Emerging applications range from statistical analysis on image stacks to complex connectomics visual analysis tools targeted to develop and test hypotheses of brain development and activity. In this work, we focus on neuroenergetics, a field where neuroscientists analyze nanoscale brain morphology and relate energy consumption to glucose storage in form of glycogen granules. In order to facilitate the understanding of neuroenergetic mechanisms, we propose a novel customized pipeline for the visual analysis of nanometric‐level reconstructions based on electron microscopy image data. Our framework supports analysis tasks by combining i) a scalable volume visualization architecture able to selectively render image stacks and corresponding labelled data, ii) a method for highlighting distance‐based energy absorption probabilities in form of glow maps, and iii) a hybrid connectivitybased and absorption‐based interactive layout representation able to support queries for selective analysis of areas of interest and potential activity within the segmented datasets. This working pipeline is currently used in a variety of studies in the neuroenergetics domain. Here, we discuss a test case in which the framework was successfully used by domain scientists for the analysis of aging effects on glycogen metabolism, extracting knowledge from a series of nanoscale brain stacks of rodents somatosensory cortex.  相似文献   

10.
Many visual analytics systems allow users to interact with machine learning models towards the goals of data exploration and insight generation on a given dataset. However, in some situations, insights may be less important than the production of an accurate predictive model for future use. In that case, users are more interested in generating of diverse and robust predictive models, verifying their performance on holdout data, and selecting the most suitable model for their usage scenario. In this paper, we consider the concept of Exploratory Model Analysis (EMA), which is defined as the process of discovering and selecting relevant models that can be used to make predictions on a data source. We delineate the differences between EMA and the well‐known term exploratory data analysis in terms of the desired outcome of the analytic process: insights into the data or a set of deployable models. The contributions of this work are a visual analytics system workflow for EMA, a user study, and two use cases validating the effectiveness of the workflow. We found that our system workflow enabled users to generate complex models, to assess them for various qualities, and to select the most relevant model for their task.  相似文献   

11.
Interactive visualization tools are being used by an increasing number of members of the general public; however, little is known about how, and how well, people use visualizations to infer causality. Adapted from the mediation causal model, we designed an analytic framework to systematically evaluate human performance, strategies, and pitfalls in a visual causal reasoning task. We recruited 24 participants and asked them to identify the mediators in a fictitious dataset using bar charts and scatter plots within our visualization interface. The results showed that the accuracy of their responses as to whether a variable is a mediator significantly decreased when a confounding variable directly influenced the variable being analyzed. Further analysis demonstrated how individual visualization exploration strategies and interfaces might influence reasoning performance. We also identified common strategies and pitfalls in their causal reasoning processes. Design implications for how future visual analytics tools can be designed to better support causal inference are discussed.  相似文献   

12.
Modelling relationship between entities in real‐world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real‐world data sets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them.  相似文献   

13.
We introduce a visual analysis system with GPU acceleration techniques for large sets of trajectories from complex dynamical systems. The approach is based on an interactive Boolean combination of subsets into a Focus+Context phase‐space visualization. We achieve high performance through efficient bitwise algorithms utilizing runtime generated GPU shaders and kernels. This enables a higher level of interactivity for visualizing the large multivariate trajectory data. We explain how our design meets a set of carefully considered analysis requirements, provide performance results, and demonstrate utility through case studies with many‐particle simulation data from two application areas.  相似文献   

14.
Multi‐Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination, provide large amounts of visual and geometric information. In this survey, we provide an up‐to‐date integrative view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus on approaches that produce relightable images through intermediate representations. This can be done both by fitting various analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications.  相似文献   

15.
We present a novel visualization concept for DNA origami structures that integrates a multitude of representations into a Dimension and Scale Unifying Map (DimSUM). This novel abstraction map provides means to analyze, smoothly transition between, and interact with many visual representations of the DNA origami structures in an effective way that was not possible before. DNA origami structures are nanoscale objects, which are challenging to model in silico. In our holistic approach we seamlessly combine three‐dimensional realistic shape models, two‐dimensional diagrammatic representations, and ordered alignments in one‐dimensional arrangements, with semantic transitions across many scales. To navigate through this large, two‐dimensional abstraction map we highlight locations that users frequently visit for certain tasks and datasets. Particularly interesting viewpoints can be explicitly saved to optimize the workflow. We have developed DimSUM together with domain scientists specialized in DNA nanotechnology. In the paper we discuss our design decisions for both the visualization and the interaction techniques. We demonstrate two practical use cases in which our approach increases the specialists’ understanding and improves their effectiveness in the analysis. Finally, we discuss the implications of our concept for the use of controlled abstraction in visualization in general.  相似文献   

16.
To complement the currently existing definitions and conceptual frameworks of visual analytics, which focus mainly on activities performed by analysts and types of techniques they use, we attempt to define the expected results of these activities. We argue that the main goal of doing visual analytics is to build a mental and/or formal model of a certain piece of reality reflected in data. The purpose of the model may be to understand, to forecast or to control this piece of reality. Based on this model‐building perspective, we propose a detailed conceptual framework in which the visual analytics process is considered as a goal‐oriented workflow producing a model as a result. We demonstrate how this framework can be used for performing an analytical survey of the visual analytics research field and identifying the directions and areas where further research is needed.  相似文献   

17.
The development of custom interactive visualization tools for specific domains and applications has been made much simpler recently by a surge of visualization tools, libraries and frameworks. Most of these tools are developed for classical data science applications, where a user is supported in analyzing measured or simulated data. But recently, there has also been an increasing interest in visual support for understanding machine learning algorithms and frameworks, especially for deep learning. Many, if not most, of the visualization support for (deep) learning addresses the developer of the learning system and not the end user (data scientist). Here we show on a specific example, namely the development of a matrix calculus algorithm, that supporting visualizations can also greatly benefit the development of algorithms in classical domains like in our case computer algebra. The idea is similar to visually supporting the understanding of learning algorithms, namely provide the developer with an interactive, visual tool that provides insights into the workings and, importantly, also into the failures of the algorithm under development. Developing visualization support for matrix calculus development went similar as the development of more traditional visual support systems for data analysts. First, we had to acquaint ourselves with the problem, its language and challenges by talking to the core developer of the matrix calculus algorithm. Once we understood the challenge, it was fairly easy to develop visual support that streamlined the development of the matrix calculus algorithm significantly.  相似文献   

18.
Visual data analysis can be envisioned as a collaboration of the user and the computational system with the aim of completing a given task. Pursuing an effective system‐user integration, in which the system actively helps the user to reach his/her analysis goal has been focus of visualization research for quite some time. However, this problem is still largely unsolved. As a result, users might be overwhelmed by powerful but complex visual analysis systems which also limits their ability to produce insightful results. In this context, guidance is a promising step towards enabling an effective mixed‐initiative collaboration to promote the visual analysis. However, the way how guidance should be put into practice is still to be unravelled. Thus, we conducted a comprehensive literature research and provide an overview of how guidance is tackled by different approaches in visual analysis systems. We distinguish between guidance that is provided by the system to support the user, and guidance that is provided by the user to support the system. By identifying open problems, we highlight promising research directions and point to missing factors that are needed to enable the envisioned human‐computer collaboration, and thus, promote a more effective visual data analysis.  相似文献   

19.
Process mining enables organizations to analyze data about their (business) processes. Visualization is key to gaining insight into these processes and the associated data. Process visualization requires a high‐quality graph layout that intuitively represents the semantics of the process. Process analysis additionally requires interactive filtering to explore the process data and process graph. The ideal process visualization therefore provides a high‐quality, intuitive layout and preserves the mental map of the user during the visual exploration. The current industry standard used for process visualization does not satisfy either of these requirements. In this paper, we propose a novel layout algorithm for processes based on the Sugiyama framework. Our approach consists of novel ranking and order constraint algorithms and a novel crossing minimization algorithm. These algorithms make use of the process data to compute stable, high‐quality layouts. In addition, we use phased animation to further improve mental map preservation. Quantitative and qualitative evaluations show that our approach computes layouts of higher quality and preserves the mental map better than the industry standard. Additionally, our approach is substantially faster, especially for graphs with more than 250 edges.  相似文献   

20.
Reminiscence is an important aspect in our life. It preserves precious memories, allows us to form our own identities and encourages us to accept the past. Our work takes the advantage of modern sensor technologies to support reminiscence, enabling self‐monitoring of personal activities and individual movement in space and time on a daily basis. This paper presents MyEvents, a web‐based personal visual analytics platform designed for non‐computing experts, that allows for the collection of long‐term location and movement data and the generation of event mementos. Our research is focused on two prominent goals in event reminiscence: (1) selection subjectivity and human involvement in the process of self‐knowledge discovery and memento creation; and (2) the enhancement of event familiarity by presenting target events and their related information for optimal memory recall and reminiscence. A novel multi‐significance event ranking model is proposed to determine significant events in the personal history according to user preferences for event category, frequency and regularity. The evaluation results show that MyEvents effectively fulfils the reminiscence goals and tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号