首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral Monte‐Carlo methods are currently the most powerful techniques for simulating light transport with wavelength‐dependent phenomena (e.g., dispersion, colored particle scattering, or diffraction gratings). Compared to trichromatic rendering, sampling the spectral domain requires significantly more samples for noise‐free images. Inspired by gradient‐domain rendering, which estimates image gradients, we propose spectral gradient sampling to estimate the gradients of the spectral distribution inside a pixel. These gradients can be sampled with a significantly lower variance by carefully correlating the path samples of a pixel in the spectral domain, and we introduce a mapping function that shifts paths with wavelength‐dependent interactions. We compute the result of each pixel by integrating the estimated gradients over the spectral domain using a one‐dimensional screened Poisson reconstruction. Our method improves convergence and reduces chromatic noise from spectral sampling, as demonstrated by our implementation within a conventional path tracer.  相似文献   

2.
The wide adoption of path‐tracing algorithms in high‐end realistic rendering has stimulated many diverse research initiatives. In this paper we present a coherent survey of methods that utilize Monte Carlo integration for estimating light transport in scenes containing participating media. Our work complements the volume‐rendering state‐of‐the‐art report by Cerezo et al. [ CPP*05 ]; we review publications accumulated since its publication over a decade ago, and include earlier methods that are key for building light transport paths in a stochastic manner. We begin by describing analog and non‐analog procedures for free‐path sampling and discuss various expected‐value, collision, and track‐length estimators for computing transmittance. We then review the various rendering algorithms that employ these as building blocks for path sampling. Special attention is devoted to null‐collision methods that utilize fictitious matter to handle spatially varying densities; we import two “next‐flight” estimators originally developed in nuclear sciences. Whenever possible, we draw connections between image‐synthesis techniques and methods from particle physics and neutron transport to provide the reader with a broader context.  相似文献   

3.
The most common solutions to the light transport problem rely on either Monte Carlo (MC) integration or density estimation methods, such as uni‐ & bi‐directional path tracing or photon mapping. Recent gradient‐domain extensions of MC approaches show great promise; here, gradients of the final image are estimated numerically (instead of the image intensities themselves) with coherent paths generated from a deterministic shift mapping. We extend gradient‐domain approaches to light transport simulation based on density estimation. As with previous gradient‐domain methods, we detail important considerations that arise when moving from a primal‐ to gradient‐domain estimator. We provide an efficient and straightforward solution to these problems. Our solution supports stochastic progressive density estimation, so it is robust to complex transport effects. We show that gradient‐domain photon density estimation converges faster than its primal‐domain counterpart, as well as being generally more robust than gradient‐domain uni‐ & bi‐directional path tracing for scenes dominated by complex transport.  相似文献   

4.
The stochastic nature of Monte Carlo rendering algorithms inherently produces noisy images. Essentially, three approaches have been developed to solve this issue: improving the ray‐tracing strategies to reduce pixel variance, providing adaptive sampling by increasing the number of rays in regions needing so, and filtering the noisy image as a post‐process. Although the algorithms from the latter category introduce bias, they remain highly attractive as they quickly improve the visual quality of the images, are compatible with all sorts of rendering effects, have a low computational cost and, for some of them, avoid deep modifications of the rendering engine. In this paper, we build upon recent advances in both non‐local and collaborative filtering methods to propose a new efficient denoising operator for Monte Carlo rendering. Starting from the local statistics which emanate from the pixels sample distribution, we enrich the image with local covariance measures and introduce a nonlocal bayesian filter which is specifically designed to address the noise stemming from Monte Carlo rendering. The resulting algorithm only requires the rendering engine to provide for each pixel a histogram and a covariance matrix of its color samples. Compared to state‐of‐the‐art sample‐based methods, we obtain improved denoising results, especially in dark areas, with a large increase in speed and more robustness with respect to the main parameter of the algorithm. We provide a detailed mathematical exposition of our bayesian approach, discuss extensions to multiscale execution, adaptive sampling and animated scenes, and experimentally validate it on a collection of scenes.  相似文献   

5.
Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state‐of‐the‐art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real‐world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements.  相似文献   

6.
Adaptive filtering techniques have proven successful in handling non‐uniform noise in Monte‐Carlo rendering approaches. A recent trend is to choose an optimal filter per pixel from a selection of non spatially‐varying filters. Nonetheless, the best filter choice is difficult to predict in the absence of a reference rendering. Our approach relies on the observation that the reconstruction error is locally smooth for a given filter. Hence, we propose to construct a dense error prediction from a small set of sparse but robust estimates. The filter selection is then formulated as a non‐local optimization problem, which we solve via graph cuts, to avoid visual artifacts due to inconsistent filter choices. Our approach does not impose any restrictions on the used filters, outperforms previous state‐of‐the‐art techniques and provides an extensible framework for future reconstruction techniques.  相似文献   

7.
The efficiency of Monte Carlo algorithms for light transport simulation is directly related to their ability to importance‐sample the product of the illumination and reflectance in the rendering equation. Since the optimal sampling strategy would require knowledge about the transport solution itself, importance sampling most often follows only one of the known factors – BRDF or an approximation of the incident illumination. To address this issue, we propose to represent the illumination and the reflectance factors by the Gaussian mixture model (GMM), which we fit by using a combination of weighted expectation maximization and non‐linear optimization methods. The GMM representation then allows us to obtain the resulting product distribution for importance sampling on‐the‐fly at each scene point. For its efficient evaluation and sampling we preform an up‐front adaptive decimation of both factor mixtures. In comparison to state‐of‐the‐art sampling methods, we show that our product importance sampling can lead to significantly better convergence in scenes with complex illumination and reflectance.  相似文献   

8.
Markov chain Monte Carlo (MCMC) sampling is a powerful approach to generate samples from an arbitrary distribution. The application to light transport simulation allows us to efficiently handle complex light transport such as highly occluded scenes. Since light transport paths in MCMC methods are sampled according to the path contributions over the sampling domain covering the whole image, bright pixels receive more samples than dark pixels to represent differences in the brightness. This variation in the number of samples per pixel is a fundamental property of MCMC methods. This property often leads to uneven convergence over the image, which is a notorious and fundamental issue of any MCMC method to date. We present a novel stratification method of MCMC light transport methods. Our stratification method, for the first time, breaks the fundamental limitation that the number of samples per pixel is uncontrollable. Our method guarantees that every pixel receives a specified number of samples by running a single Markov chain per pixel. We rely on the fact that different MCMC processes should converge to the same result when the sampling domain and the integrand are the same. We thus subdivide an image into multiple overlapping tiles associated with each pixel, run an independent MCMC process in each of them, and then align all of the tiles such that overlapping regions match. This can be formulated as an optimization problem similar to the reconstruction step for gradient-domain rendering. Further, our method can exploit the coherency of integrands among neighboring pixels via coherent Markov chains and replica exchange. Images rendered with our method exhibit much more predictable convergence compared to existing MCMC methods.  相似文献   

9.
Many‐light rendering is becoming more common and important as rendering goes into the next level of complexity. However, to calculate the illumination under many lights, state of the art algorithms are still far from efficient, due to the separate consideration of light sampling and BRDF sampling. To deal with the inefficiency of many‐light rendering, we present a novel light sampling method named BRDF‐oriented light sampling, which selects lights based on importance values estimated using the BRDF's contributions. Our BRDF‐oriented light sampling method works naturally with MIS, and allows us to dynamically determine the number of samples allocated for different sampling techniques. With our method, we can achieve a significantly faster convergence to the ground truth results, both perceptually and numerically, as compared to previous many‐light rendering algorithms.  相似文献   

10.
Monte‐Carlo path tracing techniques can generate stunning visualizations of medical volumetric data. In a clinical context, such renderings turned out to be valuable for communication, education, and diagnosis. Because a large number of computationally expensive lighting samples is required to converge to a smooth result, progressive rendering is the only option for interactive settings: Low‐sampled, noisy images are shown while the user explores the data, and as soon as the camera is at rest the view is progressively refined. During interaction, the visual quality is low, which strongly impedes the user's experience. Even worse, when a data set is explored in virtual reality, the camera is never at rest, leading to constantly low image quality and strong flickering. In this work we present an approach to bring volumetric Monte‐Carlo path tracing to the interactive domain by reusing samples over time. To this end, we transfer the idea of temporal antialiasing from surface rendering to volume rendering. We show how to reproject volumetric ray samples even though they cannot be pinned to a particular 3D position, present an improved weighting scheme that makes longer history trails possible, and define an error accumulation method that downweights less appropriate older samples. Furthermore, we exploit reprojection information to adaptively determine the number of newly generated path tracing samples for each individual pixel. Our approach is designed for static, medical data with both volumetric and surface‐like structures. It achieves good‐quality volumetric Monte‐Carlo renderings with only little noise, and is also usable in a VR context.  相似文献   

11.
Physically based rendering is a well‐understood technique to produce realistic‐looking images. However, different algorithms exist for efficiency reasons, which work well in certain cases but fail or produce rendering artefacts in others. Few tools allow a user to gain insight into the algorithmic processes. In this work, we present such a tool, which combines techniques from information visualization and visual analytics with physically based rendering. It consists of an interactive parallel coordinates plot, with a built‐in sampling‐based data reduction technique to visualize the attributes associated with each light sample. Two‐dimensional (2D) and three‐dimensional (3D) heat maps depict any desired property of the rendering process. An interactively rendered 3D view of the scene displays animated light paths based on the user's selection to gain further insight into the rendering process. The provided interactivity enables the user to guide the rendering process for more efficiency. To show its usefulness, we present several applications based on our tool. This includes differential light transport visualization to optimize light setup in a scene, finding the causes of and resolving rendering artefacts, such as fireflies, as well as a path length contribution histogram to evaluate the efficiency of different Monte Carlo estimators.  相似文献   

12.
Virtual ray lights (VRL) are a powerful representation for multiple‐scattered light transport in volumetric participating media. While efficient Monte Carlo estimators can importance sample the contribution of a VRL along an entire sensor subpath, render time still scales linearly in the number of VRLs. We present a new scalable hierarchial VRL method that preferentially samples VRLs according to their image contribution. Similar to Lightcuts‐based approaches, we derive a tight upper bound on the potential contribution of a VRL that is efficient to compute. Our bound takes into account the sampling probability densities used when estimating VRL contribution. Ours is the first such upper bound formulation, leading to an efficient and scalable rendering technique with only a few intuitive user parameters. We benchmark our approach in scenes with many VRLs, demonstrating improved scalability compared to existing state‐of‐the‐art techniques.  相似文献   

13.
Noise removal for Monte Carlo global illumination rendering is a well known problem, and has seen significant attention from image-based filtering methods. However, many state of the art methods breakdown in the presence of high frequency features, complex lighting and materials. In this work we present a probabilistic image based noise removal and irradiance filtering framework that preserves this high frequency detail such as hard shadows and glossy reflections, and imposes no restrictions on the characteristics of the light transport or materials. We maintain per-pixel clusters of the path traced samples and, using statistics from these clusters, derive an illumination aware filtering scheme based on the discrete Poisson probability distribution. Furthermore, we filter the incident radiance of the samples, allowing us to preserve and filter across high frequency and complex textures without limiting the effectiveness of the filter.  相似文献   

14.
In this work, we introduce a novel algorithm for transient rendering in participating media. Our method is consistent, robust and is able to generate animations of time‐resolved light transport featuring complex caustic light paths in media. We base our method on the observation that the spatial continuity provides an increased coverage of the temporal domain, and generalize photon beams to transient‐state. We extend stead‐state photon beam radiance estimates to include the temporal domain. Then, we develop a progressive variant of our approach which provably converges to the correct solution using finite memory by averaging independent realizations of the estimates with progressively reduced kernel bandwidths. We derive the optimal convergence rates accounting for space and time kernels, and demonstrate our method against previous consistent transient rendering methods for participating media.  相似文献   

15.
For the rendering of multiple scattering effects in participating media, methods based on the diffusion approximation are an extremely efficient alternative to Monte Carlo path tracing. However, in sufficiently transparent regions, classical diffusion approximation suffers from non‐physical radiative fluxes which leads to a poor match to correct light transport. In particular, this prevents the application of classical diffusion approximation to heterogeneous media, where opaque material is embedded within transparent regions. To address this limitation, we introduce flux‐limited diffusion, a technique from the astrophysics domain. This method provides a better approximation to light transport than classical diffusion approximation, particularly when applied to heterogeneous media, and hence broadens the applicability of diffusion‐based techniques. We provide an algorithm for flux‐limited diffusion, which is validated using the transport theory for a point light source in an infinite homogeneous medium. We further demonstrate that our implementation of flux‐limited diffusion produces more accurate renderings of multiple scattering in various heterogeneous datasets than classical diffusion approximation, by comparing both methods to ground truth renderings obtained via volumetric path tracing.  相似文献   

16.
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. We propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene‐dependent training phase, we learn to generate samples with a desired density in the primary sample space of the renderer using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real‐valued non‐volume preserving (“Real NVP”) transformations in high dimensional spaces. We use Real NVP to non‐linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with an existing rendering technique by treating it as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.  相似文献   

17.
Recently researchers have started employing Monte Carlo‐like line sample estimators in rendering, demonstrating dramatic reductions in variance (visible noise) for effects such as soft shadows, defocus blur, and participating media. Unfortunately, there is currently no formal theoretical framework to predict and analyze Monte Carlo variance using line and segment samples which have inherently anisotropic Fourier power spectra. In this work, we propose a theoretical formulation for lines and finite‐length segment samples in the frequency domain that allows analyzing their anisotropic power spectra using previous isotropic variance and convergence tools. Our analysis shows that judiciously oriented line samples not only reduce the dimensionality but also pre‐filter C0 discontinuities, resulting in further improvement in variance and convergence rates. Our theoretical insights also explain how finite‐length segment samples impact variance and convergence rates only by pre‐filtering discontinuities. We further extend our analysis to consider (uncorrelated) multi‐directional line (segment) sampling, showing that such schemes can increase variance compared to unidirectional sampling. We validate our theoretical results with a set of experiments including direct lighting, ambient occlusion, and volumetric caustics using points, lines, and segment samples.  相似文献   

18.
Recent years have seen increasing attention and significant progress in many‐light rendering, a class of methods for efficient computation of global illumination. The many‐light formulation offers a unified mathematical framework for the problem reducing the full lighting transport simulation to the calculation of the direct illumination from many virtual light sources. These methods are unrivaled in their scalability: they are able to produce plausible images in a fraction of a second but also converge to the full solution over time. In this state‐of‐the‐art report, we give an easy‐to‐follow, introductory tutorial of the many‐light theory; provide a comprehensive, unified survey of the topic with a comparison of the main algorithms; discuss limitations regarding materials and light transport phenomena and present a vision to motivate and guide future research. We will cover both the fundamental concepts as well as improvements, extensions and applications of many‐light rendering.  相似文献   

19.
Distribution effects such as diffuse global illumination, soft shadows and depth of field, are most accurately rendered using Monte Carlo ray or path tracing. However, physically accurate algorithms can take hours to converge to a noise‐free image. A recent body of work has begun to bridge this gap, showing that both individual and multiple effects can be achieved accurately and efficiently. These methods use sparse sampling, GPU raytracers, and adaptive filtering for reconstruction. They are based on a Fourier analysis, which models distribution effects as a wedge in the frequency domain. The wedge can be approximated as a single large axis‐aligned filter, which is fast but retains a large area outside the wedge, and therefore requires a higher sampling rate; or a tighter sheared filter, which is slow to compute. The state‐of‐the‐art fast sheared filtering method combines low sampling rate and efficient filtering, but has been demonstrated for individual distribution effects only, and is limited by high‐dimensional data storage and processing. We present a novel filter for efficient rendering of combined effects, involving soft shadows and depth of field, with global (diffuse indirect) illumination. We approximate the wedge spectrum with multiple axis‐aligned filters, marrying the speed of axis‐aligned filtering with an even more accurate (compact and tighter) representation than sheared filtering. We demonstrate rendering of single effects at comparable sampling and frame‐rates to fast sheared filtering. Our main practical contribution is in rendering multiple distribution effects, which have not even been demonstrated accurately with sheared filtering. For this case, we present an average speedup of 6× compared with previous axis‐aligned filtering methods.  相似文献   

20.
We present a fast reconstruction filtering method for images generated with Monte Carlo–based rendering techniques. Our approach specializes in reducing global illumination noise in the presence of depth‐of‐field effects at very low sampling rates and interactive frame rates. We employ edge‐aware filtering in the sample space to locally improve outgoing radiance of each sample. The improved samples are then distributed in the image plane using a fast, linear manifold‐based approach supporting very large circles of confusion. We evaluate our filter by applying it to several images containing noise caused by Monte Carlo–simulated global illumination, area light sources and depth of field. We show that our filter can efficiently denoise such images at interactive frame rates on current GPUs and with as few as 4–16 samples per pixel. Our method operates only on the colour and geometric sample information output of the initial rendering process. It does not make any assumptions on the underlying rendering technique and sampling strategy and can therefore be implemented completely as a post‐process filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号