首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Analyzing molecular dynamics (MD) simulations is a key aspect to understand protein dynamics and function. With increasing computational power, it is now possible to generate very long and complex simulations, which are cumbersome to explore using traditional 3D animations of protein movements. Guided by requirements derived from multiple focus groups with protein engineering experts, we designed and developed a novel interactive visual analysis approach for long and crowded MD simulations. In this approach, we link a dynamic 3D focus+context visualization with a 2D chart of time series data to guide the detection and navigation towards important spatio‐temporal events. The 3D visualization renders elements of interest in more detail and increases the temporal resolution dependent on the time series data or the spatial region of interest. In case studies with different MD simulation data sets and research questions, we found that the proposed visual analysis approach facilitates exploratory analysis to generate, confirm, or reject hypotheses about causalities. Finally, we derived design guidelines for interactive visual analysis of complex MD simulation data.  相似文献   

3.
The goal of visual analytics is to create a symbiosis between human and computer by leveraging their unique strengths. While this model has demonstrated immense success, we are yet to realize the full potential of such a human‐computer partnership. In a perfect collaborative mixed‐initiative system, the computer must possess skills for learning and anticipating the users' needs. Addressing this gap, we propose a framework for inferring attention from passive observations of the user's click, thereby allowing accurate predictions of future events. We demonstrate this technique with a crime map and found that users' clicks can appear in our prediction set 92% ‐ 97% of the time. Further analysis shows that we can achieve high prediction accuracy typically after three clicks. Altogether, we show that passive observations of interaction data can reveal valuable information that will allow the system to learn and anticipate future events.  相似文献   

4.
We present a novel visualization concept for DNA origami structures that integrates a multitude of representations into a Dimension and Scale Unifying Map (DimSUM). This novel abstraction map provides means to analyze, smoothly transition between, and interact with many visual representations of the DNA origami structures in an effective way that was not possible before. DNA origami structures are nanoscale objects, which are challenging to model in silico. In our holistic approach we seamlessly combine three‐dimensional realistic shape models, two‐dimensional diagrammatic representations, and ordered alignments in one‐dimensional arrangements, with semantic transitions across many scales. To navigate through this large, two‐dimensional abstraction map we highlight locations that users frequently visit for certain tasks and datasets. Particularly interesting viewpoints can be explicitly saved to optimize the workflow. We have developed DimSUM together with domain scientists specialized in DNA nanotechnology. In the paper we discuss our design decisions for both the visualization and the interaction techniques. We demonstrate two practical use cases in which our approach increases the specialists’ understanding and improves their effectiveness in the analysis. Finally, we discuss the implications of our concept for the use of controlled abstraction in visualization in general.  相似文献   

5.
We report on an in‐depth corpus linguistic study on ‘multiple views’ terminology and word collocation. We take a broad interpretation of these terms, and explore the meaning and diversity of their use in visualisation literature. First we explore senses of the term ‘multiple views’ (e.g., ‘multiple views’ can mean juxtaposition, many viewport projections or several alternative opinions). Second, we investigate term popularity and frequency of occurrences, investigating usage of ‘multiple’ and ‘view’ (e.g., multiple views, multiple visualisations, multiple sets). Third, we investigate word collocations and terms that have a similar sense (e.g., multiple views, side‐by‐side, small multiples). We built and used several corpora, including a 6‐million‐word corpus of all IEEE Visualisation conference articles published in IEEE Transactions on Visualisation and Computer Graphics 2012 to 2017. We draw on our substantial experience from early work in coordinated and multiple views, and with collocation analysis develop several lists of terms. This research provides insight into term use, a reference for novice and expert authors in visualisation, and contributes a taxonomy of ‘multiple view’ terms.  相似文献   

6.
The Curriculum Vitae (CV, also referred to as “résumé”) is an established representation of a person's academic and professional history. A typical CV is comprised of multiple sections associated with spatio‐temporal, nominal, hierarchical, and ordinal data. The main task of a recruiter is, given a job application with specific requirements, to compare and assess CVs in order to build a short list of promising candidates to interview. Commonly, this is done by viewing CVs in a side‐by‐side fashion. This becomes challenging when comparing more than two CVs, because the reader is required to switch attention between them. Furthermore, there is no guarantee that the CVs are structured similarly, thus making the overview cluttered and significantly slowing down the comparison process. In order to address these challenges, in this paper we propose “CV3”, an interactive exploration environment offering users a new way to explore, assess, and compare multiple CVs, to suggest suitable candidates for specific job requirements. We validate our system by means of domain expert feedback whose results highlight both the efficacy of our approach and its limitations. We learned that CV3 eases the overall burden of recruiters thereby assisting them in the selection process.  相似文献   

7.
Visual data analysis can be envisioned as a collaboration of the user and the computational system with the aim of completing a given task. Pursuing an effective system‐user integration, in which the system actively helps the user to reach his/her analysis goal has been focus of visualization research for quite some time. However, this problem is still largely unsolved. As a result, users might be overwhelmed by powerful but complex visual analysis systems which also limits their ability to produce insightful results. In this context, guidance is a promising step towards enabling an effective mixed‐initiative collaboration to promote the visual analysis. However, the way how guidance should be put into practice is still to be unravelled. Thus, we conducted a comprehensive literature research and provide an overview of how guidance is tackled by different approaches in visual analysis systems. We distinguish between guidance that is provided by the system to support the user, and guidance that is provided by the user to support the system. By identifying open problems, we highlight promising research directions and point to missing factors that are needed to enable the envisioned human‐computer collaboration, and thus, promote a more effective visual data analysis.  相似文献   

8.
In sports, Play Diagrams are the standard way to represent and convey information. They are widely used by coaches, managers, journalists and fans in general. There are situations where diagrams may be hard to understand, for example, when several actions are packed in a certain region of the field or there are just too many actions to be transformed in a clear depiction of the play. The representation of how actions develop through time, in particular, may be hardly achieved on such diagrams. The time, and the relationship among the actions of the players through time, is critical on the depiction of complex plays. In this context, we present a study on how player actions may be clearly depicted on 2D diagrams. The study is focused on Baseball plays, a sport where diagrams are heavily used to summarize the actions of the players. We propose a new and simple approach to represent spatiotemporal information in the form of a timeline. We designed our visualization with a requirement driven approach, conducting interviews and fulfilling the needs of baseball experts and expert‐fans. We validate our approach by presenting a detailed analysis of baseball plays and conducting interviews with four domain experts.  相似文献   

9.
Data summarization allows analysts to explore datasets that may be too complex or too large to visualize in detail. Designers face a number of design and implementation choices when using summarization in visual analytics systems. While these choices influence the utility of the resulting system, there are no clear guidelines for the use of these summarization techniques. In this paper, we codify summarization use in existing systems to identify key factors in the design of summary visualizations. We use quantitative content analysis to systematically survey examples of visual analytics systems and enumerate the use of these design factors in data summarization. Through this analysis, we expose the relationship between design considerations, strategies for data summarization in visualization systems, and how different summarization methods influence the analyses supported by systems. We use these results to synthesize common patterns in real‐world use of summary visualizations and highlight open challenges and opportunities that these patterns offer for designing effective systems. This work provides a more principled understanding of design practices for summary visualization and offers insight into underutilized approaches.  相似文献   

10.
Communication‐minded visualizations are designed to provide their audience—managers, decision‐makers, and the public—with new knowledge. Authoring such visualizations effectively is challenging because the audience often lacks the expertise, context, and time that professional analysts have at their disposal to explore and understand datasets. We present a novel summarized line graph visualization technique designed specifically for data analysts to communicate data to decision‐makers more effectively and efficiently. Our summarized line graph reduces a large and detailed dataset of multiple quantitative time‐series into (1) representative data that provides a quick takeaway of the full dataset; (2) analytical highlights that distinguish specific insights of interest; and (3) a data envelope that summarizes the remaining aggregated data. Our summarized line graph achieved the best overall results when evaluated against line graphs, band graphs, stream graphs, and horizon graphs on four representative tasks.  相似文献   

11.
With the rapid development of e‐commerce, there is an increasing number of online review websites, such as Yelp, to help customers make better purchase decisions. Viewing online reviews, including the rating score and text comments by other customers, and conducting a comparison between different businesses are the key to making an optimal decision. However, due to the massive amount of online reviews, the potential difference of user rating standards, and the significant variance of review time, length, details and quality, it is difficult for customers to achieve a quick and comprehensive comparison. In this paper, we present E‐Comp, a carefully‐designed visual analytics system based on online reviews, to help customers compare local businesses at different levels of details. More specifically, intuitive glyphs overlaid on maps are designed for quick candidate selection. Grouped Sankey diagram visualizing the rating difference by common customers is chosen for more reliable comparison of two businesses. Augmented word cloud showing adjective‐noun word pairs, combined with a temporal view, is proposed to facilitate in‐depth comparison of businesses in terms of different time periods, rating scores and features. The effectiveness and usability of E‐Comp are demonstrated through a case study and in‐depth user interviews.  相似文献   

12.
Data can be aggregated in many ways before being visualized in charts, profoundly affecting what a chart conveys. Despite this importance, the type of aggregation is often communicated only via axis titles. In this paper, we investigate the use of animation to disambiguate different types of aggregation and communicate the meaning of aggregate operations. We present design rationales for animated transitions depicting aggregate operations and present the results of an experiment assessing the impact of these different transitions on identification tasks. We find that judiciously staged animated transitions can improve subjects' accuracy at identifying the aggregation performed, though sometimes with longer response times than with static transitions. Through an analysis of participants' rankings and qualitative responses, we find a consistent preference for animation over static transitions and highlight visual features subjects report relying on to make their judgments. We conclude by extending our animation designs to more complex charts of aggregated data such as box plots and bootstrapped confidence intervals.  相似文献   

13.
Motivated by visualizing spatial data using proportional symbols, we study the following problem: given a set of overlapping squares of varying sizes, minimally displace the squares as to remove the overlap while maintaining the orthogonal order on their centers. Though this problem is NP‐hard, we show that rotating the squares by 45 degrees into diamonds allows for a linear or convex quadratic program. It is thus efficiently solvable even for relatively large instances. This positive result and the flexibility offered by constraint programming allow us to study various trade‐offs for overlap removal. Specifically, we model and evaluate through computational experiments the relations between displacement, scale and order constraints for static data, and between displacement and temporal coherence for time‐varying data. Finally, we also explore the generalization of our methodology to other shapes.  相似文献   

14.
We visualize contours for spatio‐temporal processes to indicate where and when non‐continuous changes occur or spatial bounds are encountered. All time steps are comprised densely in one visualization, with contours allowing to efficiently analyze processes in the data even in case of spatial or temporal overlap. Contours are determined on the basis of deep raycasting that collects samples across time and depth along each ray. For each sample along a ray, its closest neighbors from adjacent rays are identified, considering time, depth, and value in the process. Large distances are represented as contours in image space, using color to indicate temporal occurrence. This contour representation can easily be combined with volume rendering‐based techniques, providing both full spatial detail for individual time steps and an outline of the whole time series in one view. Our view‐dependent technique supports efficient progressive computation, and requires no prior assumptions regarding the shape or nature of processes in the data. We discuss and demonstrate the performance and utility of our approach via a variety of data sets, comparison and combination with an alternative technique, and feedback by a domain scientist.  相似文献   

15.
Visualizing contextual information to a map often comes at the expense of overplotting issues. Especially for use cases with relevant map features in the immediate vicinity of an information to add, occlusion of the relevant map context should be avoided. We present SurgeryCuts, a map manipulation technique for the creation of additional canvas area for contextual visualizations on maps. SurgeryCuts is occlusion‐free and does not shift, zoom or alter the map viewport. Instead, relevant parts of the map can be cut apart. The affected area is controlledly distorted using a parameterizable warping function fading out the map distortion depending on the distance to the cut. We define extended metrics for our approach and compare to related approaches. As well, we demonstrate the applicability of our approach at the example of tangible use cases and a comparative user study.  相似文献   

16.
We introduce a visual analysis system with GPU acceleration techniques for large sets of trajectories from complex dynamical systems. The approach is based on an interactive Boolean combination of subsets into a Focus+Context phase‐space visualization. We achieve high performance through efficient bitwise algorithms utilizing runtime generated GPU shaders and kernels. This enables a higher level of interactivity for visualizing the large multivariate trajectory data. We explain how our design meets a set of carefully considered analysis requirements, provide performance results, and demonstrate utility through case studies with many‐particle simulation data from two application areas.  相似文献   

17.
In many scientific disciplines, the motion of finite‐sized objects in fluid flows plays an important role, such as in brownout engineering, sediment transport, oceanology or meteorology. These finite‐sized objects are called inertial particles and, in contrast to traditional tracer particles, their motion depends on their current position, their own particle velocity, the time and their size. Thus, the visualization of their motion becomes a high‐dimensional problem that entails computational and perceptual challenges. So far, no visualization explored and visualized the particle trajectories under variation of all seeding parameters. In this paper, we propose three coordinated views that visualize the different aspects of the high‐dimensional space in which the particles live. We visualize the evolution of particles over time, showing that particles travel different distances in the same time, depending on their size. The second view provides a clear illustration of the trajectories of different particle sizes and allows the user to easily identify differences due to particle size. Finally, we embed the trajectories in the space‐velocity domain and visualize their distance to an attracting manifold using ribbons. In all views, we support interactive linking and brushing, and provide abstraction through density volumes that are shown by direct volume rendering and isosurface slabs. Using our method, users gain deeper insights into the dynamics of inertial particles in 2D fluids, including size‐dependent separation, preferential clustering and attraction. We demonstrate the effectiveness of our method in multiple steady and unsteady 2D flows.  相似文献   

18.
The Parallel Vectors (PV) Operator extracts the locations of points where two vector fields are parallel. In general, these features are line structures. The PV operator has been used successfully for a variety of problems, which include finding vortex‐core lines or extremum lines. We present a new generic feature extraction method for multiple 3D vector fields: The Approximate Parallel Vectors (APV) Operator extracts lines where all fields are approximately parallel. The definition of the APV operator is based on the application of PV for two vector fields that are derived from the given set of fields. The APV operator enables the direct visualization of features of vector field ensembles without processing fields individually and without causing visual clutter. We give a theoretical analysis of the APV operator and demonstrate its utility for a number of ensemble data.  相似文献   

19.
Measured data often incorporates some amount of uncertainty, which is generally modeled as a distribution of possible samples. In this paper, we consider second‐order symmetric tensors with uncertainty. In the 3D case, this means the tensor data consists of 6 coefficients – uncertainty, however, is encoded by 21 coefficients assuming a multivariate Gaussian distribution as model. The high dimension makes the direct visualization of tensor data with uncertainty a difficult problem, which was until now unsolved. The contribution of this paper consists in the design of glyphs for uncertain second‐order symmetric tensors in 2D and 3D. The construction consists of a standard glyph for the mean tensor that is augmented by a scalar field that represents uncertainty. We show that this scalar field and therefore the displayed glyph encode the uncertainty comprehensively, i.e., there exists a bijective map between the glyph and the parameters of the distribution. Our approach can extend several classes of existing glyphs for symmetric tensors to additionally encode uncertainty and therefore provides a possible foundation for further uncertain tensor glyph design. For demonstration, we choose the well‐known superquadric glyphs, and we show that the uncertainty visualization satisfies all their design constraints.  相似文献   

20.
The analysis of protein‐ligand interactions is complex because of the many factors at play. Most current methods for visual analysis provide this information in the form of simple 2D plots, which, besides being quite space hungry, often encode a low number of different properties. In this paper we present a system for compact 2D visualization of molecular simulations. It purposely omits most spatial information and presents physical information associated to single molecular components and their pairwise interactions through a set of 2D InfoVis tools with coordinated views, suitable interaction, and focus+context techniques to analyze large amounts of data. The system provides a wide range of motifs for elements such as protein secondary structures or hydrogen bond networks, and a set of tools for their interactive inspection, both for a single simulation and for comparing two different simulations. As a result, the analysis of protein‐ligand interactions of Molecular Simulation trajectories is greatly facilitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号