首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a bi‐layer representation for textures which is suitable for on‐the‐fly synthesis of unbounded textures from an input exemplar. The goal is to improve the variety of outputs while preserving plausible small‐scale details. The insight is that many natural textures can be decomposed into a series of fine scale Gaussian patterns which have to be faithfully reproduced, and some non‐homogeneous, larger scale structure which can be deformed to add variety. Our key contribution is a novel, bi‐layer representation for such textures. It includes a model for spatially‐varying Gaussian noise, together with a mechanism enabling synchronization with a structure layer. We propose an automatic method to instantiate our bi‐layer model from an input exemplar. At the synthesis stage, the two layers are generated independently, synchronized and added, preserving the consistency of details even when the structure layer has been deformed to increase variety. We show on a variety of complex, real textures, that our method reduces repetition artifacts while preserving a coherent appearance.  相似文献   

2.
We propose an approach for temporally coherent patch‐based texture synthesis on the free surface of fluids. Our approach is applied as a post‐process, using the surface and velocity field from any fluid simulator. We apply the texture from the exemplar through multiple local mesh patches fitted to the surface and mapped to the exemplar. Our patches are constructed from the fluid free surface by taking a subsection of the free surface mesh. As such, they are initially very well adapted to the fluid's surface, and can later deform according to the free surface velocity field, allowing a greater ability to represent surface motion than rigid or 2D grid‐based patches. From one frame to the next, the patch centers and surrounding patch vertices are advected according to the velocity field. We seek to maintain a Poisson disk distribution of patches, and following advection, the Poisson disk criterion determines where to add new patches and which patches should e flagged for removal. The removal considers the local number of patches: in regions containing too many patches, we accelerate the temporal removal. This reduces the number of patches while still meeting the Poisson disk criterion. Reducing areas with too many patches speeds up the computation and avoids patch‐blending artifacts. The final step of our approach creates the overall texture in an atlas where each texel is computed from the patches using a contrast‐preserving blending function. Our tests show that the approach works well on free surfaces undergoing significant deformation and topological changes. Furthermore, we show that our approach provides good results for many fluid simulation scenarios, and with many texture exemplars. We also confirm that the optical flow from the resulting texture matches the fluid velocity field. Overall, our approach compares favorably against recent work in this area.  相似文献   

3.
Distributions of samples play a very important role in rendering, affecting variance, bias and aliasing in Monte‐Carlo and Quasi‐Monte Carlo evaluation of the rendering equation. In this paper, we propose an original sampler which inherits many important features of classical low‐discrepancy sequences (LDS): a high degree of uniformity of the achieved distribution of samples, computational efficiency and progressive sampling capability. At the same time, we purposely tailor our sampler in order to improve its spectral characteristics, which in turn play a crucial role in variance reduction, anti‐aliasing and improving visual appearance of rendering. Our sampler can efficiently generate sequences of multidimensional points, whose power spectra approach so‐called Blue‐Noise (BN) spectral property while preserving low discrepancy (LD) in certain 2‐D projections. In our tile‐based approach, we perform permutations on subsets of the original Sobol LDS. In a large space of all possible permutations, we select those which better approach the target BN property, using pair‐correlation statistics. We pre‐calculate such “good” permutations for each possible Sobol pattern, and store them in a lookup table efficiently accessible in runtime. We provide a complete and rigorous proof that such permutations preserve dyadic partitioning and thus the LDS properties of the point set in 2‐D projections. Our construction is computationally efficient, has a relatively low memory footprint and supports adaptive sampling. We validate our method by performing spectral/discrepancy/aliasing analysis of the achieved distributions, and provide variance analysis for several target integrands of theoretical and practical interest.  相似文献   

4.
Procedural textile models are compact, easy to edit, and can achieve state‐of‐the‐art realism with fiber‐level details. However, these complex models generally need to be fully instantiated (aka. realized ) into 3D volumes or fiber meshes and stored in memory, We introduce a novel realization‐minimizing technique that enables physically based rendering of procedural textiles, without the need of full model realizations. The key ingredients of our technique are new data structures and search algorithms that look up regular and flyaway fibers on the fly, efficiently and consistently. Our technique works with compact fiber‐level procedural yarn models in their exact form with no approximation imposed. In practice, our method can render very large models that are practically unrenderable using existing methods, while using considerably less memory (60–200× less) and achieving good performance.  相似文献   

5.
In this paper, we propose a novel motion controller for the online generation of natural character locomotion that adapts to new situations such as changing user control or applying external forces. This controller continuously estimates the next footstep while walking and running, and automatically switches the stepping strategy based on situational changes. To develop the controller, we devise a new physical model called an inverted‐pendulum‐based abstract model (IPAM). The proposed abstract model represents high‐dimensional character motions, inheriting the naturalness of captured motions by estimating the appropriate footstep location, speed and switching time at every frame. The estimation is achieved by a deep learning based regressor that extracts important features in captured motions. To validate the proposed controller, we train the model using captured motions of a human stopping, walking, and running in a limited space. Then, the motion controller generates human‐like locomotion with continuously varying speeds, transitions between walking and running, and collision response strategies in a cluttered space in real time.  相似文献   

6.
Fused deposition modeling based 3D‐printing is becoming increasingly popular due to it's low‐cost and simple operation and maintenance. While it produces rugged prints made from a wide range of materials, it suffers from an inherent printing limitation where it cannot produce overhanging surfaces of non‐trivial size. This limitation can be handled by constructing temporary support‐structures, however this solution involves additional material costs, longer print time, and often a fair amount of labor in removing it. In this paper we present a new method for partitioning general solid objects into a small number of parts that can be printed with no support. The partitioning is computed by applying a sequence of cutting‐planes that split the object recursively. Unlike existing algorithms, the planes are not chosen at random, rather they are derived from shape analysis routines that identify and resolve various commonly‐found geometric configurations. In addition, we guide this search by a revised set of conditions that both ensure the objects' printability as well as realistically model the printing capabilities of the printer at hand. Evaluation of the new method demonstrates its ability to efficiently obtain support‐free partitionings typically containing fewer parts compared to existing methods that rely on support‐structures.  相似文献   

7.
It is well known that cubic texture filtering can be efficiently implemented on the GPU by using a method published by Sigg and Hadwiger [ SH05 ], which simplifies the evaluation to a linear combination of linear texture fetches. However, their method cannot be directly applied if the filter kernel takes also negative values like the popular Catmull‐Rom spline, for example. In this paper, we propose a modified algorithm that is able to handle also the negative weights. Therefore, using our method, the Catmull‐Rom spline interpolation can also be evaluated in one, two, and three dimensions by taking two, four, and eight linear texture fetches, respectively.  相似文献   

8.
We present a novel example‐based material appearance modeling method suitable for rapid digital content creation. Our method only requires a single HDR photograph of a homogeneous isotropic dielectric exemplar object under known natural illumination. While conventional methods for appearance modeling require prior knowledge on the object shape, our method does not, nor does it recover the shape explicitly, greatly simplifying on‐site appearance acquisition to a lightweight photography process suited for non‐expert users. As our central contribution, we propose a shape‐agnostic BRDF estimation procedure based on binary RGB profile matching. We also model the appearance of materials exhibiting a regular or stationary texture‐like appearance, by synthesizing appropriate mesostructure from the same input HDR photograph and a mesostructure exemplar with (roughly) similar features. We believe our lightweight method for on‐site shape‐agnostic appearance acquisition presents a suitable alternative for a variety of applications that require plausible “rapid‐appearance‐modeling”.  相似文献   

9.
This paper proposes a scale‐adaptive filtering method to improve the performance of structure‐preserving texture filtering for image smoothing. With classical texture filters, it usually is challenging to smooth texture at multiple scales while preserving salient structures in an image. We address this issue in the concept of adaptive bilateral filtering, where the scales of Gaussian range kernels are allowed to vary from pixel to pixel. Based on direction‐wise statistics, our method distinguishes texture from structure effectively, identifies appropriate scope around a pixel to be smoothed and thus infers an optimal smoothing scale for it. Filtering an image with varying‐scale kernels, the image is smoothed according to the distribution of texture adaptively. With commendable experimental results, we show that, needing less iterations, our proposed scheme boosts texture filtering performance in terms of preserving the geometric structures of multiple scales even after aggressive smoothing of the original image.  相似文献   

10.
We present a grid‐based fluid solver for simulating viscous materials and their interactions with solid objects. Our method formulates the implicit viscosity integration as a minimization problem with consistently estimated volume fractions to account for the sub‐grid details of free surfaces and solid boundaries. To handle the interplay between fluids and solid objects with viscosity forces, we also formulate the two‐way fluid‐solid coupling as a unified minimization problem based on the variational principle, which naturally enforces the boundary conditions. Our formulation leads to a symmetric positive definite linear system with a sparse matrix regardless of the monolithically coupled solid objects. Additionally, we present a position‐correction method using density constraints to enforce the uniform distributions of fluid particles and thus prevent the loss of fluid volumes. We demonstrate the effectiveness of our method in a wide range of viscous fluid scenarios.  相似文献   

11.
We introduce an interactive tool for novice users to design mechanical objects made of 2.5D linkages. Users simply draw the shape of the object and a few key poses of its multiple moving parts. Our approach automatically generates a one‐degree‐of freedom linkage that connects the fixed and moving parts, such that the moving parts traverse all input poses in order without any collision with the fixed and other moving parts. In addition, our approach avoids common linkage defects and favors compact linkages and smooth motion trajectories. Finally, our system automatically generates the 3D geometry of the object and its links, allowing the rapid creation of a physical mockup of the designed object.  相似文献   

12.
Harmonious color combinations can stimulate positive user emotional responses. However, a widely open research question is: how can we establish a robust and accurate color harmony measure for the public and professional designers to identify the harmony level of a color theme or color set. Building upon the key discovery that color pairs play an important role in harmony estimation, in this paper we present a novel color‐pair based estimation model to accurately measure the color harmony. It first takes a two‐layer maximum likelihood estimation (MLE) based method to compute an initial prediction of color harmony by statistically modeling the pair‐wise color preferences from existing datasets. Then, the initial scores are refined through a back‐propagation neural network (BPNN) with a variety of color features extracted in different color spaces, so that an accurate harmony estimation can be obtained at the end. Our extensive experiments, including performance comparisons of harmony estimation applications, show the advantages of our method in comparison with the state of the art methods.  相似文献   

13.
Feature curves on 3D shapes provide important hints about significant parts of the geometry and reveal their underlying structure. However, when we process real world data, automatically detected feature curves are affected by measurement uncertainty, missing data, and sampling resolution, leading to noisy, fragmented, and incomplete feature curve networks. These artifacts make further processing unreliable. In this paper we analyze the global co‐occurrence information in noisy feature curve networks to fill in missing data and suppress weakly supported feature curves. For this we propose an unsupervised approach to find meaningful structure within the incomplete data by detecting multiple occurrences of feature curve configurations (co‐occurrence analysis). We cluster and merge these into feature curve templates, which we leverage to identify strongly supported feature curve segments as well as to complete missing data in the feature curve network. In the presence of significant noise, previous approaches had to resort to user input, while our method performs fully automatic feature curve co‐completion. Finding feature reoccurrences however, is challenging since naïve feature curve comparison fails in this setting due to fragmentation and partial overlaps of curve segments. To tackle this problem we propose a robust method for partial curve matching. This provides us with the means to apply symmetry detection methods to identify co‐occurring configurations. Finally, Bayesian model selection enables us to detect and group re‐occurrences that describe the data well and with low redundancy.  相似文献   

14.
Monte Carlo methods for physically‐based light transport simulation are broadly adopted in the feature film production, animation and visual effects industries. These methods, however, often result in noisy images and have slow convergence. As such, improving the convergence of Monte Carlo rendering remains an important open problem. Gradient‐domain light transport is a recent family of techniques that can accelerate Monte Carlo rendering by up to an order of magnitude, leveraging a gradient‐based estimation and a reformulation of the rendering problem as an image reconstruction. This state of the art report comprehensively frames the fundamentals of gradient‐domain rendering, as well as the pragmatic details behind practical gradient‐domain uniand bidirectional path tracing and photon density estimation algorithms. Moreover, we discuss the various image reconstruction schemes that are crucial to accurate and stable gradient‐domain rendering. Finally, we benchmark various gradient‐domain techniques against the state‐of‐the‐art in denoising methods before discussing open problems.  相似文献   

15.
Removing specular highlight in an image is a fundamental research problem in computer vision and computer graphics. While various methods have been proposed, they typically do not work well for real‐world images due to the presence of rich textures, complex materials, hard shadows, occlusions and color illumination, etc. In this paper, we present a novel specular highlight removal method for real‐world images. Our approach is based on two observations of the real‐world images: (i) the specular highlight is often small in size and sparse in distribution; (ii) the remaining diffuse image can be represented by linear combination of a small number of basis colors with the sparse encoding coefficients. Based on the two observations, we design an optimization framework for simultaneously estimating the diffuse and specular highlight images from a single image. Specifically, we recover the diffuse components of those regions with specular highlight by encouraging the encoding coefficients sparseness using L0 norm. Moreover, the encoding coefficients and specular highlight are also subject to the non‐negativity according to the additive color mixing theory and the illumination definition, respectively. Extensive experiments have been performed on a variety of images to validate the effectiveness of the proposed method and its superiority over the previous methods.  相似文献   

16.
Cloth simulations, widely used in computer animation and apparel design, can be computationally expensive for real‐time applications. Some parallelization techniques have been proposed for visual simulation of cloth using CPU or GPU clusters and often rely on parallelization using spatial domain decomposition techniques that have a large communication overhead. In this paper, we propose a novel time‐domain parallelization technique that makes use of the two‐level mesh representation to resolve the time‐dependency issue and develop a practical algorithm to smooth the state transition from the corresponding coarse to fine meshes. A load estimation and a load balancing technique used in online partitioning are also proposed to maximize the performance acceleration. Our method achieves a nearly linear performance scaling on manycore clusters and outperforms spatial‐domain parallelization on a diverse set of benchmarks.  相似文献   

17.
This paper proposes a deep learning‐based image tone enhancement approach that can maximally enhance the tone of an image while preserving the naturalness. Our approach does not require carefully generated ground‐truth images by human experts for training. Instead, we train a deep neural network to mimic the behavior of a previous classical filtering method that produces drastic but possibly unnatural‐looking tone enhancement results. To preserve the naturalness, we adopt the generative adversarial network (GAN) framework as a regularizer for the naturalness. To suppress artifacts caused by the generative nature of the GAN framework, we also propose an imbalanced cycle‐consistency loss. Experimental results show that our approach can effectively enhance the tone and contrast of an image while preserving the naturalness compared to previous state‐of‐the‐art approaches.  相似文献   

18.
We propose a novel framework to generate a global texture atlas for a deforming geometry. Our approach distinguishes from prior arts in two aspects. First, instead of generating a texture map for each timestamp to color a dynamic scene, our framework reconstructs a global texture atlas that can be consistently mapped to a deforming object. Second, our approach is based on a single RGB‐D camera, without the need of a multiple‐camera setup surrounding a scene. In our framework, the input is a 3D template model with an RGB‐D image sequence, and geometric warping fields are found using a state‐of‐the‐art non‐rigid registration method [GXW*15] to align the template mesh to noisy and incomplete input depth images. With these warping fields, our multi‐scale approach for texture coordinate optimization generates a sharp and clear texture atlas that is consistent with multiple color observations over time. Our approach is accelerated by graphical hardware and provides a handy configuration to capture a dynamic geometry along with a clean texture atlas. We demonstrate our approach with practical scenarios, particularly human performance capture. We also show that our approach is resilient on misalignment issues caused by imperfect estimation of warping fields and inaccurate camera parameters.  相似文献   

19.
Inspired by skeletal animation, a novel rigging‐skinning flow control scheme is proposed to animate fluids intuitively and efficiently. The new animation pipeline creates fluid animation via two steps: fluid rigging and fluid skinning. The fluid rig is defined by a point cloud with rigid‐body movement and incompressible deformation, whose time series can be intuitively specified by a rigid body motion and a constrained free‐form deformation, respectively. The fluid skin generates plausible fluid flows by virtually fluidizing the point‐cloud fluid rig with adjustable zero‐ and first‐order flow features and at fixed computational cost. Fluid rigging allows the animator to conveniently specify the desired low‐frequency flow motion through intuitive manipulations of a point cloud, while fluid skinning truthfully and efficiently converts the motion specified on the fluid rig into plausible flows of the animation fluid, with adjustable fine‐scale effects. Besides being intuitive, the rigging‐skinning scheme for fluid animation is robust and highly efficient, avoiding completely iterative trials or time‐consuming nonlinear optimization. It is also versatile, supporting both particle‐ and grid‐ based fluid solvers. A series of examples including liquid, gas and mixed scenes are presented to demonstrate the performance of the new animation pipeline.  相似文献   

20.
We present a versatile technique to convert textures with tristimulus colors into the spectral domain, allowing such content to be used in modern rendering systems. Our method is based on the observation that suitable reflectance spectra can be represented using a low‐dimensional parametric model that is intrinsically smooth and energy‐conserving, which leads to significant simplifications compared to prior work. The resulting spectral textures are compact and efficient: storage requirements are identical to standard RGB textures, and as few as six floating point instructions are required to evaluate them at any wavelength. Our model is the first spectral upsampling method to achieve zero error on the full sRGB gamut. The technique also supports large‐gamut color spaces, and can be vectorized effectively for use in rendering systems that handle many wavelengths at once.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号