首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
We present a new method for non‐rigid shape matching designed to enforce continuity of the resulting correspondence. Our method is based on the recently proposed functional map representation, which allows efficient manipulation and inference but often fails to provide a continuous point‐to‐point mapping. We address this problem by exploiting the connection between the operator representation of mappings and flows of vector fields. In particular, starting from an arbitrary continuous map between two surfaces we find an optimal flow that makes the final correspondence operator as close as possible to the initial functional map. Our method also helps to address the symmetric ambiguity problem inherent in many intrinsic correspondence methods when matching symmetric shapes. We provide practical and theoretical results showing that our method can be used to obtain an orientation preserving or reversing map starting from a functional map that represents the mixture of the two. We also show how this method can be used to improve the quality of maps produced by existing shape matching methods, and compare the resulting map's continuity with results obtained by other operator‐based techniques.  相似文献   

3.
基于简化多边形类正切空间表示的图形渐变算法   总被引:1,自引:0,他引:1  
采用多边形简化的方法提取出包含源图形主要特征点的多边形.在简化多边形的类正切空间表示下,利用图形对应边在渐变过程中所掠过面积总和最小这一特征构造相似度量函数,由动态规划算法求解实现初始和目标简化多边形之间的顶点对应,再进一步建立源图形顶点之间的整体对应,最后通过插值边和角的方法实现图形渐变.实验结果表明:该算法简单有效,对应效果自然、合理.  相似文献   

4.
One of the challenging problems for shape editing is to adapt shapes with diversified structures for various editing needs. In this paper we introduce a shape editing approach that automatically adapts the structure of a shape being edited with respect to user inputs. Given a category of shapes, our approach first classifies them into groups based on the constituent parts. The group‐sensitive priors, including both inter‐group and intra‐group priors, are then learned through statistical structure analysis and multivariate regression. By using these priors, the inherent characteristics and typical variations of shape structures can be well captured. Based on such group‐sensitive priors, we propose a framework for real‐time shape editing, which adapts the structure of shape to continuous user editing operations. Experimental results show that the proposed approach is capable of both structure‐preserving and structure‐varying shape editing.  相似文献   

5.
Based on a new spectral vector field analysis on triangle meshes, we construct a compact representation for near conformal mesh surface correspondences. Generalizing the functional map representation, our representation uses the map between the low‐frequency tangent vector fields induced by the correspondence. While our representation is as efficient, it is also capable of handling a more generic class of correspondence inference. We also formulate the vector field preservation constraints and regularization terms for correspondence inference, with function preservation treated as a special case. A number of important vector field–related constraints can be implicitly enforced in our representation, including the commutativity of the mapping with the usual gradient, curl, divergence operators or angle preservation under near conformal correspondence. For function transfer between shapes, the preservation of function values on landmarks can be strictly enforced through our gradient domain representation, enabling transfer across different topologies. With the vector field map representation, a novel class of constraints can be specified for the alignment of designed or computed vector field pairs. We demonstrate the advantages of the vector field map representation in tests on conformal datasets and near‐isometric datasets.  相似文献   

6.
We propose a self‐supervised approach to deep surface deformation. Given a pair of shapes, our algorithm directly predicts a parametric transformation from one shape to the other respecting correspondences. Our insight is to use cycle‐consistency to define a notion of good correspondences in groups of objects and use it as a supervisory signal to train our network. Our method combines does not rely on a template, assume near isometric deformations or rely on point‐correspondence supervision. We demonstrate the efficacy of our approach by using it to transfer segmentation across shapes. We show, on Shapenet, that our approach is competitive with comparable state‐of‐the‐art methods when annotated training data is readily available, but outperforms them by a large margin in the few‐shot segmentation scenario.  相似文献   

7.
Harmonic volumetric mapping aims to establish a smooth bijective correspondence between two solid shapes with the same topology. In this paper, we develop an automatic meshless method for creating such a mapping between two given objects. With the shell surface mapping as the boundary condition, we first solve a linear system constructed by a boundary method called the method of fundamental solution, and then represent the mapping using a set of points with different weights in the vicinity of the shell of the given model. Our algorithm is a true meshless method (without the need of any specific meshing structure within the solid interior) and the behavior of the interior region is directly determined by the boundary, which can improve the computational efficiency and robustness significantly. Therefore, our algorithm can be applied to massive volume data sets with various geometric primitives and topological types. We demonstrate the utility and efficacy of our algorithm in information transfer, shape registration, deformation sequence analysis, tetrahedral remeshing, and solid texture synthesis.   相似文献   

8.
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non‐rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non‐rigid multi‐part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non‐rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario.  相似文献   

9.
The concept of using functional maps for representing dense correspondences between deformable shapes has proven to be extremely effective in many applications. However, despite the impact of this framework, the problem of recovering the point‐to‐point correspondence from a given functional map has received surprisingly little interest. In this paper, we analyse the aforementioned problem and propose a novel method for reconstructing pointwise correspondences from a given functional map. The proposed algorithm phrases the matching problem as a regularized alignment problem of the spectral embeddings of the two shapes. Opposed to established methods, our approach does not require the input shapes to be nearly‐isometric, and easily extends to recovering the point‐to‐point correspondence in part‐to‐whole shape matching problems. Our numerical experiments demonstrate that the proposed approach leads to a significant improvement in accuracy in several challenging cases.  相似文献   

10.
目的 针对传统非刚性3维模型的对应关系计算方法需要模型间真实对应关系监督的缺点,提出一种自监督深度残差函数映射网络(self-supervised deep residual functional maps network,SSDRFMN)。方法 首先将局部坐标系与直方图结合以计算3维模型的特征描述符,即方向直方图签名(signature of histograms of orientations,SHOT)描述符;其次将源模型与目标模型的SHOT描述符输入SSDRFMN,利用深度函数映射(deep functional maps,DFM)层计算两个模型间的函数映射矩阵,并通过模糊对应层将函数映射关系转换为点到点的对应关系;最后利用自监督损失函数计算模型间的测地距离误差,对计算出的对应关系进行评估。结果 实验结果表明,在MPI-FAUST数据集上,本文算法相比于有监督的深度函数映射(supervised deep functional maps,SDFM)算法,人体模型对应关系的测地误差减小了1.45;相比于频谱上采样(spectral upsampling,SU)算法减小了1.67。在TOSCA数据集上,本文算法相比于SDFM算法,狗、猫和狼等模型的对应关系的测地误差分别减小了3.13、0.98和1.89;相比于SU算法分别减小了2.81、2.22和1.11,并有效克服了已有深度函数映射方法需要模型间的真实对应关系来监督的缺点,使得该方法可以适用于不同的数据集,可扩展性大幅增强。结论 本文通过自监督深度残差函数映射网络训练模型的方向直方图签名描述符,提升了模型对应关系的准确率。本文方法可以适应于不同的数据集,相比传统方法,普适性较好。  相似文献   

11.
Non‐rigid 3D shape correspondence is a fundamental and difficult problem. Most applications which require a correspondence rely on manually selected markers. Without user assistance, the performances of existing automatic correspondence methods depend strongly on a good initial shape alignment or shape prior, and they generally do not tolerate large shape variations. We present an automatic feature correspondence algorithm capable of handling large, non‐rigid shape variations, as well as partial matching. This is made possible by leveraging the power of state‐of‐the‐art mesh deformation techniques and relying on a combinatorial tree traversal for correspondence search. The search is deformation‐driven, prioritized by a self‐distortion energy measured on meshes deformed according to a given correspondence. We demonstrate the ability of our approach to naturally match shapes which differ in pose, local scale, part decomposition, and geometric detail through numerous examples.  相似文献   

12.
We introduce an automatic 3D shape morphing method without the need of manually placing anchor correspondence points. Given a source and a target shape, we extract their skeletons and automatically estimate the meaningful anchor points based on their skeleton node correspondences. Based on the anchors, dense correspondences between the interior of source and target shape can be established using earth mover’s distance (EMD) optimization. Skeleton node correspondence, estimated with a voting-based method, leads to part correspondence which can be used to confine the dense correspondence within matched part pairs. This produces smooth and plausible morphing sequence based on distance field interpolation (DFI). We demonstrate the effectiveness of our algorithm over shapes with large geometric variation and structural difference.  相似文献   

13.
We present a 3‐D correspondence method to match the geometric extremities of two shapes which are partially isometric. We consider the most general setting of the isometric partial shape correspondence problem, in which shapes to be matched may have multiple common parts at arbitrary scales as well as parts that are not similar. Our rank‐and‐vote‐and‐combine algorithm identifies and ranks potentially correct matches by exploring the space of all possible partial maps between coarsely sampled extremities. The qualified top‐ranked matchings are then subjected to a more detailed analysis at a denser resolution and assigned with confidence values that accumulate into a vote matrix. A minimum weight perfect matching algorithm is finally iterated to combine the accumulated votes into an optimal (partial) mapping between shape extremities, which can further be extended to a denser map. We test the performance of our method on several data sets and benchmarks in comparison with state of the art.  相似文献   

14.
15.
This paper presents a method that takes a collection of 3D surface shapes, and produces a consistent and individually feature preserving quadrangulation of each shape. By exploring the correspondence among shapes within a collection, we coherently extract a set of representative feature lines as the key characteristics for the given shapes. Then we compute a smooth cross-field interpolating sparsely distributed directional constraints induced from the feature lines and apply the mixed-integer quadrangulation to generate the quad meshes. We develop a greedy algorithm to extract aligned cut graphs across the shape collection so that the meshes can be aligned in a common parametric domain. Computational results demonstrate that our approach not only produces consistent quad meshes across the entire collection with significant geometry variation but also achieves a trade-off between global structural simplicity for the collection and local geometry fidelity for each shape.  相似文献   

16.
In this paper, we describe a novel geometric approach in the process of recovering 3D protein structures from scalar volumes. The input to our method is a sequence of α-helices that make up a protein, and a low-resolution protein density volume where possible locations of α-helices have been detected. Our task is to identify the correspondence between the two sets of helices, which will shed light on how the protein folds in space. The central theme of our approach is to cast the correspondence problem as that of shape matching between the 3D volume and the 1D sequence. We model both shapes as attributed relational graphs, and formulate a constrained inexact graph matching problem. To compute the matching, we developed an optimal algorithm based on the A*-search with several choices of heuristic functions. As demonstrated in a suite of synthetic and authentic inputs, the shape-modeling approach is capable of identifying helix correspondences in noise-abundant volumes at high accuracy with minimal or no user intervention.  相似文献   

17.
In this paper, we propose a method for computing partial functional correspondence between non‐rigid shapes. We use perturbation analysis to show how removal of shape parts changes the Laplace–Beltrami eigenfunctions, and exploit it as a prior on the spectral representation of the correspondence. Corresponding parts are optimization variables in our problem and are used to weight the functional correspondence; we are looking for the largest and most regular (in the Mumford–Shah sense) parts that minimize correspondence distortion. We show that our approach can cope with very challenging correspondence settings.  相似文献   

18.
19.
20.
We present a dense correspondence method for isometric shapes, which is accurate yet computationally efficient. We minimize the isometric distortion directly in the 3D Euclidean space, i.e., in the domain where isometry is originally defined, by using a coarse‐to‐fine sampling and combinatorial matching algorithm. Our method does not require any initialization and aims to find an accurate solution in the minimum‐distortion sense for perfectly isometric shapes. We demonstrate the performance of our method on various isometric (or nearly isometric) pairs of shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号