首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major problem with interactive displays based on front projection is that users cast undesirable shadows on the display surface. This paper demonstrates that shadows can be muted by redundantly illuminating the display surface using multiple projectors, all mounted at different locations. However, this technique alone does not eliminate shadows: multiple projectors create multiple dark regions on the surface (penumbral occlusions) and cast undesirable light onto the users. These problems can be solved by eliminating shadows and suppressing the light that falls on occluding users by actively modifying the projected output. This paper categorizes various methods that can be used to achieve redundant illumination, shadow elimination, and blinding light suppression and evaluates their performance  相似文献   

2.
Abstract— A method to increase the viewing resolution of an autostereoscopic display without increasing the density of microlenses is proposed. Multiple projectors are used for the projection images to be focused and overlaid on a common plane in the air behind the microlens array. The multiple overlaid projection images yield multiple light spots inside the region of each elemental lenslet of the microlens array. This feature provides scalable high‐resolution images by increasing the number of projectors. Based on the proposed method, a prototype display that includes 15 projectors was designed and built. 3‐D images were successfully reproduced on the prototype display with full parallax and a wide viewing angle of 70°.  相似文献   

3.
We present a GPU accelerated volume ray casting system interactively driving a multi‐user light field display. The display, driven by a single programmable GPU, is based on a specially arranged array of projectors and a holographic screen and provides full horizontal parallax. The characteristics of the display are exploited to develop a specialized volume rendering technique able to provide multiple freely moving naked‐eye viewers the illusion of seeing and manipulating virtual volumetric objects floating in the display workspace. In our approach, a GPU ray‐caster follows rays generated by a multiple‐center‐of‐projection technique while sampling pre‐filtered versions of the dataset at resolutions that match the varying spatial accuracy of the display. The method achieves interactive performance and provides rapid visual understanding of complex volumetric data sets even when using depth oblivious compositing techniques.  相似文献   

4.
This paper proposes a novel shadow removal technique for cooperative projection system based on spatiotemporal prediction. In our previous work, we proposed a distributed feedback algorithm, which is implementable in cooperative projection environments subject to data transfer constraints between components. A weakness of this scheme is that the compensation is conducted in each pixel independently. As a result, spatiotemporal information of the environmental change cannot be utilized even if it is available. In view of this, we specifically investigate the situation where some of the projectors are occluded by a moving object whose one‐frame‐ahead behaviour is predictable. In order to remove the resulting shadow, we propose a novel error propagating scheme that is still implementable in a distributed manner and enables us to incorporate the prediction information of the obstacle. It is demonstrated theoretically and experimentally that the proposed method significantly improves the shadow removal performance in comparison to the previous work.  相似文献   

5.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

6.
Abstract— Stereoscopic and autostereoscopic projection‐display systems use projector arrays to present stereoscopic images, and each projector casts one parallax image of a stereoscopic scene. Because of the position shift of the projectors, the parallax images have geometric deformation, which influences the quality of the displayed stereoscopic images. In order to solve this problem, a method based on homography is proposed. The parallax images are pre‐transformed before they are projected, and then the stereoscopic images without geometric distortion can be obtained. An autostereoscopic projection‐display system is developed to present the images with and without calibration. Experimental results show that this method works effectively.  相似文献   

7.
Abstract— Successful color‐management of projection systems depends on knowledge of their characteristics. In this study, two typical portable projectors were characterized. The projectors are based on different technologies, liquid‐crystal display (LCD) and digital light‐processing (DLP). Measurements were made with a spectroradiometer. The properties measured were spectral characteristics and the intensity of the primary and white colors, basic colorimetric characteristics, inter‐channel dependency, tone characteristics, color‐tracking characteristics, spatial non‐uniformity, dependency on background, and temporal stability. Based on the characterization results, the possibility of color‐management of the tested projectors is discussed.  相似文献   

8.
We introduce adaptive volumetric shadow maps (AVSM), a real‐time shadow algorithm that supports high‐quality shadowing from dynamic volumetric media such as hair and smoke. The key contribution of AVSM is the introduction of a streaming simplification algorithm that generates an accurate volumetric light attenuation function using a small fixed memory footprint. This compression strategy leads to high performance because the visibility data can remain in on‐chip memory during simplification and can be efficiently sampled during rendering. We demonstrate that AVSM compression closely approximates the ground‐truth correct solution and performs competitively to existing real‐time rendering techniques while providing higher quality volumetric shadows.  相似文献   

9.
We introduce an image‐based representation, called volumetric billboards, allowing for the real‐time rendering of semi‐transparent and visually complex objects arbitrarily distributed in a 3D scene. Our representation offers full parallax effect from any viewing direction and improved anti‐aliasing of distant objects. It correctly handles transparency between multiple and possibly overlapping objects without requiring any primitive sorting. Furthermore, volumetric billboards can be easily integrated into common rasterization‐based renderers, which allows for their concurrent use with polygonal models and standard rendering techniques such as shadow‐mapping. The representation is based on volumetric images of the objects and on a dedicated real‐time volume rendering algorithm that takes advantage of the GPU geometry shader. Our examples demonstrate the applicability of the method in many cases including levels‐of‐detail representation for multiple intersecting complex objects, volumetric textures, animated objects and construction of high‐resolution objects by assembling instances of low‐resolution volumetric billboards.  相似文献   

10.
Abstract— A 40‐in. tiled projection integral imaging system has been implemented, adopting a polarization‐multiplexing technique. The system is composed of two full‐high‐definition (HD) projectors, a time‐varying polarizer, a polarization preserving screen, polarization films, a lens array, and a control unit. An elemental image set is projected using two full‐HD projectors to enhance the resolution of the system. The viewing region of the system is increased by using a polarization switching method. The polarization state of the elemental image set is changed by the time‐varying polarizer, and the elemental image set is diffused by the polarization preserving screen. The elemental image set with a preserved polarization state forms a three‐dimensional image with increased viewing angle by the integration of a lens array with polarization films. A 60‐in. tiled projection integral imaging system was also demonstrated using four full‐HD projectors.  相似文献   

11.
A new architecture for a thin (2‐cm depth) rear projection display is described. In order to achieve this small depth, a very high density of rear projectors is used. Three prototype displays using rear projectors on both 5‐ and 2‐cm pitch arrays are described. The displays can achieve an effective screen pixel pitch of as small as 0.5 mm, which makes this technology competitive in terms of resolution with fine pitch LED displays; however, orders of magnitude fewer LEDs are required: Each rear projector requires only one white LED and a color liquid crystal light modulator. In the three prototypes, the projector light modulators utilize 101‐cm (40 in.), 80‐cm (31.5 in.), and 60‐cm (24 in.) diagonal liquid crystal display glass. To minimize cost, no lenses are utilized for the rear projectors. An RGB LED array may augment the projector array, which provides a low resolution component of the image onto which the high resolution component is superimposed by the projector array. Edge gaps between active areas on adjacent LCD glass units are completely eliminated by the rear projection approach enabling low profile wall‐size seamless displays. Display contrast depends on rear projection screen design.  相似文献   

12.
Abstract— Tiled displays provide high resolution and large scale simultaneously. Projectors can project on any available surface. Thus, it is possible to create a large high‐resolution display by simply tiling multiple projectors on any available regular surface. The tremendous advancement in projection technology has made projectors portable and affordable. One can envision displays made of multiple such projectors that can be packed in one's car trunk, carried from one location to another, deployed at each location easily to create a seamless high‐resolution display, and, finally, dismantled in minutes to be taken to the next location — essentially a pack‐and‐go display. Several challenges must be overcome in order to realize such pack‐and‐go displays. These include allowing for imperfect uncalibrated devices, uneven non‐diffused display surfaces, and a layman user via complete automation in deployment that requires no user invention. We described the advances we have made in addressing these challenges for the most common case of planar display surfaces. First, we present a technique to allow imperfect projectors. Next, we present a technique to allow a photometrically uncalibrated camera. Finally, we present a novel distributed architecture that renders critical display capabilities such as self‐calibration, scalability, and reconfigurability without any user intervention. These advances are important milestones towards the development of easy‐to‐use multi‐projector displays that can be deployed anywhere and by anyone.  相似文献   

13.
Abstract— Building a projection‐based virtual reality display is a time‐, cost‐, and resource‐intensive enterprise, and many details contribute to the final display quality. This is especially true for surround‐ screen displays where most of them are one‐of‐a‐kind systems or custom‐made installations with specialized projectors, framing, and projection screens. In general, the costs of acquiring these types of systems have been in the hundreds and even millions of dollars, specifically for those supporting synchronized stereoscopic projection across multiple screens. Furthermore, the maintenance of such systems adds an additional recurrent cost, which makes them hard to afford for general introduction in a wider range of industry, academic, and research communities. A low‐cost easy‐to‐maintain surround‐screen design based on off‐the‐shelf affordable components for the projection screens, framing, and display systems is presented. The resulting system quality is comparableto significantly more expensive commercially available solutions. Additionally, users with average knowledge can implement this design, and it has the added advantage that single components can be individually upgraded based on necessity as well as available funds.  相似文献   

14.
视频分割中运动阴影消除的新方法   总被引:2,自引:0,他引:2       下载免费PDF全文
对于视频分割中运动阴影消除的问题,提出了一种结合色度、亮度和边缘信息的方法.首先使用结合核密度估计和边缘信息的分割方法获得初始分割结果及其中运动对象的边缘,然后提取输入视频帧的色度和亮度信息以得到可能的运动阴影区域,最后通过阴影区域生长将运动阴影和运动对象区分开.实验结果表明,该方法具有良好的消除运动阴影的性能.  相似文献   

15.
A simple and high image quality method for viewpoint image synthesis from multi‐camera images for a stereoscopic 3D display using head tracking is proposed. In this method, slices of images for depth layers are made using approximate depth information, the slices are linearly blended corresponding to the distance between the viewpoint and cameras at each layer, and the layers are overlaid from the perspective of viewpoint. Because the linear blending automatically compensates for depth error because of the visual effects of depth‐fused 3D (DFD), the resulting image is natural to observer's perception. Smooth motion parallax of wide depth range objects induced by viewpoint movement for left‐and‐right and front‐and‐back directions is achieved using multi‐camera images and approximate depth information. Because the calculation algorithm is very simple, it is suitable for real time 3D display applications.  相似文献   

16.
In recent years, high-resolution displays have become increasingly important to decision makers and scientists because large screens combined with a high pixel count facilitate content rich, simultaneous display of computer-generated imagery and high-definition video data from multiple sources. Tiled displays are attractive due to their extended screen real estate, scalability, and low cost. LCD panels are usually preferred over projectors because of their superior resolution. One of the drawbacks of LCD-based tiled displays is the fact that users sometimes get distracted by the screens' bezels, which cause discontinuities in rendered images, animations, or videos. Most conventional solutions either ignore the bezels and display all pixels, causing objects to become distorted, or eliminate the pixels that would normally fall under the bezels, causing pixels to be missing in the display of static images. In animations, the missing pixels will eventually reappear when the object moves, providing an experience that is similar to looking through a French window. In this paper, we present a new scalable approach that leads neither to discontinuities nor to significant loss of information. By projecting onto the bezels, we demonstrate that a combination of LCD-based tiled displays and projection significantly reduces the bezel problem. Our technique eliminates ambiguities that commonly occur on tiled displays in the fields of information visualization, visual data analysis, human-computer interaction, and scientific data display. It improves the usability of multimonitor systems by virtually eliminating the bezels. We describe a setup and provide results from an evaluation experiment conducted on a 3 times 3 and on a 10 times 5 tiled display wall.  相似文献   

17.
We present a novel design of a parameterization image stitching algorithm for ultrashort throw laser MEMS projectors. The resultant method allows the use of projectors with short or even long throw ratios to achieve ultrashort throw projection through a parameterized algorithm to stitch multiple images into one single frame, alleviating the trade‐off between the resolution and frame rate in conventional laser MEMS displays. To evaluate the effectiveness, we construct a test system that consists of three off‐the‐shelf projectors with a throw ratio of 1.3 and three planar reflective mirrors. Using our method, the integrated system yields an ultrashort throw ratio of 0.26, greatly reducing the projection distance from 12 to 2.6 ft for the 120‐in. screen in diagonal. Moreover, our algorithm can be fine‐tuned to correct for image distortion, intensity variation, and edge mismatch induced by two‐axis light beam steering, thereby further improving the image quality.  相似文献   

18.
A hierarchical color correction framework is presented to automatically calibrate multiple projectors. The proposed framework consists of two sub-methods: a simple color correction method and an advanced color correction method. An automatic selection scheme is designed to choose between the two sub-methods according to specific conditions. The simple color correction method uses a parameter model to map projected images into the Common Achievable Response (CAR) space for color consistent outputs. The advanced color correction method takes the projector properties, the display surface optical properties, and the relative distances between the screen and the projectors into consideration. A pre-processing step is designed to eliminate isolated abnormal sampling points, resulting in better quality outputs. In the experiment part, the effectiveness of the proposed framework is verified with both front projection systems and rear projection systems. The experimental results show that the proposed framework achieves better calibration results comparing with traditional methods.  相似文献   

19.
Abstract— The problem with front‐projection displays is that the screen contrast ratio decreases under bright‐ambient conditions. To overcome this problem, the design of a special screen, composed of the diffuser whose diffusing property shows top‐hat characteristics and a sawtooth reflector, is proposed. The screen diffuses the incident image light arriving at a projection‐angle range that is a lower‐angle range than the viewing‐angle range, and reflects the ambient light out of the viewing‐angle range. In this paper, the projection‐angle range and the viewing‐angle range was optimized to improve the contrast ratio of a front‐projection display. As a result, a special screen with the above‐mentioned diffusing property was realized, and a high‐quality front‐projection display with a high contrast ratio, even in a bright room, was achieved.  相似文献   

20.
带状图像交叉区域的骨架求解算法   总被引:4,自引:2,他引:2  
交叉区域的求解技术是图像骨架化中的难点,在基于无向图的图像整体骨架表示模型及算法的基础上,提出了图像交叉区域(如X形、K形等)的骨架求解算法,它根据图像交叉区域在无向图中的位置和邻接关系确定图像交叉区域的形状,并根据几何近似原理,用多边形近似方法对不同形状的交叉区域进行求解,算法充分利用图像的拓扑信息,具有速度快,了等优点,并得到了实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号