首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, an efficient sub‐gridding finite‐difference time‐domain is developed for the simulation of multiscaled electromagnetic problems. The proposed technique is based on using the Huygens surfaces for interfacing electromagnetic fields between different grids. The use of the Object Oriented Programming for modeling FDTD simulations facilitates the imbrication of multiple sub‐grids. That heightens the spatial ratio without affecting the accuracy and stability of the sub‐gridding technique. Spatiotemporal interpolation is used to evaluate the electromagnetic fields in Huygens surface location among the coarse grid. Results of numerical experiments prove that the use of imbricated sub‐grids and spatiotemporal interpolation in the Huygens sub‐gridding is more efficient than the use of a single sub‐grid with only spatial interpolation.  相似文献   

2.
Many phenomena in nature and engineering happen simultaneously on rather diverse spatial and temporal scales. In other words, they exhibit a multi-scale character. A special numerical multilevel technique associated with a particular hierarchical data structure is adaptive mesh refinement (AMR). This scheme achieves locally very high spatial and temporal resolutions. Due to its popularity, many scientists are in need of interactive visualization tools for AMR data. In this article, we present a 3D texture-based volume-rendering algorithm for AMR data that directly utilizes the hierarchical structure. Thereby fast rendering performance is achieved even for high-resolution data sets. To avoid multiple rendering of regions that are covered by grids of different levels of resolution, we propose a space partitioning scheme to decompose the volume into axis-aligned regions of equal-sized cells. Furthermore the problems of interpolation artifacts, opacity corrections, and texture memory limitations are addressed. Published online: November 6, 2002 Correspondence to: R. K?hler  相似文献   

3.
We present an efficient approach for performing smoke simulation on curvilinear grids. Our technique is based on a fast unconditionally‐stable advection algorithm and on a new and efficient solution to enforce mass conservation. It uses a staggered‐grid variable arrangement, and has linear cost on the number of grid cells. Our method naturally integrates itself with overlapping‐grid techniques, lending to an efficient way of producing highly‐realistic animations of dynamic scenes. Compared to approaches based on regular grids traditionally used in computer graphics, our method allows for better representation of boundary conditions, with just a small increment in computational cost. Thus, it can be used to evaluate aerodynamic properties, possibly enabling unexplored applications in computer graphics, such as interactive computation of lifting forces on complex objects. We demonstrate the effectiveness of our approach, both in 2‐D and 3‐D, through a variety of high‐quality smoke animations.  相似文献   

4.
We present a hybrid particle/grid approach for simulating incompressible fluids on collocated velocity grids. Our approach supports both particle-based Lagrangian advection in very detailed regions of the flow and efficient Eulerian grid-based advection in other regions of the flow. A novel Backward Semi-Lagrangian method is derived to improve accuracy of grid based advection. Our approach utilizes the implicit formula associated with solutions of the inviscid Burgers’ equation. We solve this equation using Newton's method enabled by C1 continuous grid interpolation. We enforce incompressibility over collocated, rather than staggered grids. Our projection technique is variational and designed for B-spline interpolation over regular grids where multiquadratic interpolation is used for velocity and multilinear interpolation for pressure. Despite our use of regular grids, we extend the variational technique to allow for cut-cell definition of irregular flow domains for both Dirichlet and free surface boundary conditions.  相似文献   

5.
6.
Image Interpolation by Pixel-Level Data-Dependent Triangulation   总被引:1,自引:0,他引:1  
We present a novel image interpolation algorithm. The algorithm can be used in arbitrary resolution enhancement, arbitrary rotation and other applications of still images in continuous space. High‐resolution images are interpolated from the pixel‐level data‐dependent triangulation of lower‐resolution images. It is simpler than other methods and is adaptable to a variety of image manipulations. Experimental results show that the new “mesh image” algorithm is as fast as the bilinear interpolation method. We assess the interpolated images' quality visually and also by the MSE measure which shows our method generates results comparable in quality to slower established methods. We also implement our method in graphics card hardware using OpenGL which leads to real‐time high‐quality image reconstruction. These features give it the potential to be used in gaming and image‐processing applications.  相似文献   

7.
In virtual environments, real‐time simulation and rendering of dynamic fluids have always been the pursuit for virtual reality research. In this paper, we present a real‐time framework for realistic fluid simulation and rendering on graphics processing unit. Because of the high demand for interactive fluids with larger particle set, the computational need is becoming higher. The proposed framework can effectively reduce the computational burden through avoiding the computation in inactive areas, where many particles with similar properties and low local pressure cluster together. While in active areas, the computation is fully carried out; thus, the fluid dynamics are largely preserved. Here, a robust particle classification technique is introduced to classify particles into either active or inactive. The test results have shown that the technique improves the time performance of fluid simulation largely. We then incorporate parallel surface reconstruction technique using marching cubes to extract the surfaces of the fluid. The introduced histogram pyramid‐based marching cubes technique is fast and memory efficiency. As a result, we are able to produce plausible and interactive fluids with the proposed framework for large‐scale virtual environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Closely related to the safety and stability of power grids, stability analysis has long been a core topic in the electric industry. Conventional approaches employ computational simulation to make the quantitative judgement of the grid stability under distinctive conditions. The lack of in-depth data analysis tools has led to the difficulty in analytical tasks such as situation-aware analysis, instability reasoning and pattern recognition. To facilitate visual exploration and reasoning on the simulation data, we introduce WaveLines, a visual analysis approach which supports the supervisory control of multivariate simulation time series of power grids. We design and implement an interactive system that supports a set of analytical tasks proposed by domain experts and experienced operators. Experiments have been conducted with domain experts to illustrate the usability and effectiveness of WaveLines.  相似文献   

9.
Continuous scatterplots   总被引:1,自引:0,他引:1  
Scatterplots are well established means of visualizing discrete data values with two data variables as a collection of discrete points. We aim at generalizing the concept of scatterplots to the visualization of spatially continuous input data by a continuous and dense plot. An example of a continuous input field is data defined on an n-D spatial grid with respective interpolation or reconstruction of in-between values. We propose a rigorous, accurate, and generic mathematical model of continuous scatterplots that considers an arbitrary density defined on an input field on an n-D domain and that maps this density to m-D scatterplots. Special cases are derived from this generic model and discussed in detail: scatterplots where the n-D spatial domain and the m-D data attribute domain have identical dimension, 1-D scatterplots as a way to define continuous histograms, and 2-D scatterplots of data on 3-D spatial grids. We show how continuous histograms are related to traditional discrete histograms and to the histograms of isosurface statistics. Based on the mathematical model of continuous scatterplots, respective visualization algorithms are derived, in particular for 2-D scatterplots of data from 3-D tetrahedral grids. For several visualization tasks, we show the applicability of continuous scatterplots. Since continuous scatterplots do not only sample data at grid points but interpolate data values within cells, a dense and complete visualization of the data set is achieved that scales well with increasing data set size. Especially for irregular grids with varying cell size, improved results are obtained when compared to conventional scatterplots. Therefore, continuous scatterplots are a suitable extension of a statistics visualization technique to be applied to typical data from scientific computation.  相似文献   

10.

Super resolution (SR) reconstruction based on iterative back projection (IBP) is a widely used image reconstruction method. IBP approach is easy to implement and allows easy inclusion of the spatial domain with low computational complexity. However, local minima trapping; slow rate of convergence; sensitive to the initial guess; prone to ringing and jaggy artifacts are some major bottlenecks which restrict its performance. The present paper aims to enhance the performance of IBP based SR reconstruction (IBP-SRR) of image by exploring an effective method. The proposed method has fast convergence rate, a global optimal solution, capability to lessen the effect of artifacts and a noble generalization performance. In the present work, P-spline interpolation scheme imposes additional penalty in the inherently smooth B-spline interpolation process to provide a proper initial guess. An adaptive edge regularization technique is used in the constraint optimization of the reconstruction problem to minimize the effect of ringing artifacts. Finally, the overall reconstruction error of the reconstruction system is optimized using a hybrid meta-heuristic optimization technique. The optimization algorithm hybridizes the notion of Cuckoo search optimization (CSO) algorithm with a mutation operator (MuCSO) and the quantum behaved particle swarm optimization (QPSO). The MuCSO-QPSO algorithm is compared with other significant optimization algorithms such as GA, PSO, QPSO, CSO, MuCSO and found to be outperforming. Experimental results demonstrate the superiority of the proposed edge preserving IBP-SRR method in terms of enhanced spatial resolution, and more detail reconstruction.

  相似文献   

11.
We propose a method for interactive cloning of 3D surface geometry using a paintbrush interface, similar to the continuous cloning brush popular in image editing. Existing interactive mesh composition tools focus on atomic copy‐and‐paste of preselected feature areas, and are either limited to copying surface displacements, or require the solution of variational optimization problems, which is too expensive for an interactive brush interface. In contrast, our GeoBrush method supports real‐time continuous copying of arbitrary high‐resolution surface features between irregular meshes, including topological handles. We achieve this by first establishing a correspondence between the source and target geometries using a novel generalized discrete exponential map parameterization. Next we roughly align the source geometry with the target shape using Green Coordinates with automatically‐constructed cages. Finally, we compute an offset membrane to smoothly blend the pasted patch with C continuity before stitching it into the target. The offset membrane is a solution of a bi‐harmonic PDE, which is computed on the GPU in real time by exploiting the regular parametric domain. We demonstrate the effectiveness of GeoBrush with various editing scenarios, including detail enrichment and completion of scanned surfaces.  相似文献   

12.
针对视频数据噪声及计算误差造成重建流体高度场时域跳变的问题, 提出一种视频数据驱动的流体表面模型生成方法。首先, 在折射的流体表面重建算法基础上, 利用水下场景视频数据生成初始流体表面高度场; 其次, 为了提高模型的时间连贯性, 用数据驱动方式获取浅水波模拟关键参数的最优值; 最后改进了浅水波模拟的计算求解过程, 并将其作为物理约束来修正初始模型。基于真实数据的实验结果表明, 该方法能够有效平滑流体模型高度场的跳变, 使水体表面重建结果更加准确和连贯。  相似文献   

13.
14.
Flow maps are widely used to provide an overview of geospatial transportation data. Existing solutions lack the support for the interactive exploration of multiple flow components at once. Flow components are given by different materials being transported, different flow directions, or by the need for comparing alternative scenarios. In this paper, we combine flows as individual ribbons in one composite flow map. The presented approach can handle an arbitrary number of sources and sinks. To avoid visual clutter, we simplify our flow maps based on a force‐driven algorithm, accounting for restrictions with respect to application semantics. The goal is to preserve important characteristics of the geospatial context. This feature also enables us to highlight relevant spatial information on top of the flow map such as traffic conditions or accessibility. The flow map is computed on the basis of flows between zones. We describe a method for auto‐deriving zones from geospatial data according to application requirements. We demonstrate the method in real‐world applications, including transportation logistics, evacuation procedures, and water simulation. Our results are evaluated with experts from corresponding fields.  相似文献   

15.
本文依据Shepard基本原理,提出了一种新的自适应曲面重建算法。该算法首先利用LMS方法优化改进型Shepard算法,求出由粗糙到细致的控制网格。再利用双线性插值方法进行曲面重建,同时保证曲面的平滑性。实验结果表明本文提出的算法能够有效地重建较高精度的曲面。  相似文献   

16.
Digital terrain models (DTMs) in the present context are simply regular grids of elevation measurements over the land surface. DTMs are mainly extracted by applying the technique of stereo measurements to images available from aerial photography and/or remote sensing. Enormous amounts of local and global DTM data with different specifications are now available. However, numerous geoscience and engineering applications need denser and more accurate DTM data. Collecting additional height data in the field, if not impossible, is either expensive or time consuming or both. Stereo aerial or satellite imagery is often unavailable and very expensive to acquire. Interpolation techniques are fast and cheap, but have their own inherent difficulties and problems, especially in rough terrain. Advanced space technology has provided much single (if not stereo) high-resolution satellite images almost worldwide. Besides, shape from shading (SFS) is one of the methods to derive the geometric information about the objects from the analysis of the monocular images. This paper discusses the idea of using the SFS method with single high resolution imagery to optimize the interpolation techniques used in densifying regular grids of heights. Three different methodologies are briefly explained and then implemented with both simulated and real data. Numerical results are briefly discussed and a short discussion on how to make the computations more efficient will be presented. The implemented algorithms show that one can easily take advantage of parallel processing techniques to speed up the highly demanding computations involved in this application. Finally, a few remarks and conclusions are drawn.  相似文献   

17.
一种改进的边缘方向插值算法   总被引:7,自引:0,他引:7       下载免费PDF全文
已有的边缘方向插值算法利用高低分辨率图像局部方差之间存在的对偶性实现自适应非线性插值。其性能明显优于传统线性插值算法,但图像边缘噪声可能仍然比较明显。为了获得更好的视觉效果。提出了一种改进算法。充分利用局部降采样像素之间的相关信息,用和被插点相邻的6个降采样像素估计高分辨率图像的局部协方差。该算法应用于灰度和彩色图像的分辨率增强,不仅降低了运算复杂度,而且有效地抑制了边缘噪声,进一步提高了插值图像的视觉质量。  相似文献   

18.
Streak lines and particle traces are effective visualization techniques for studying unsteady fluid flows. For real time applications, accuracy is often sacrificed to achieve interactive frame rates. Physical space particle tracing algorithms produce the most accurate results although they are usually too expensive for interactive applications. An efficient physical space algorithm is presented which was developed for interactive investigation and visualization of large, unsteady, aeronautical simulations. Performance has been increased by applying tetrahedral decomposition to speed up point location and velocity interpolation in curvilinear grids. Preliminary results from batch computations showed that this approach was up to six times faster than the most common algorithm which uses the Newton-Raphson method and trilinear interpolation. Results presented show that the tetrahedral approach also permits interactive computation and visualization of unsteady particle traces. Statistics are given for frame rates and computation times on single and multiprocessors. The benefits of interactive feature detection in unsteady flows are also demonstrated  相似文献   

19.
脑部数字减影图象增强研究   总被引:3,自引:0,他引:3       下载免费PDF全文
针对数字减影图象中,因运动引起的图象质量下降问题,提出了一种基于图象配准的数字减影图象增强算法,该算法通过选择合适的控制点和相似测度,采用快速样条插值算法以及鲍威尔优化搜索方法,并用块匹配方法对造影图象和掩膜图象进行配准,实验结果表明,配准后的减影图象质量良好,不仅具有较高的临床诊断价值,并且该算法具有较快的计算速度。  相似文献   

20.
A hybrid dynamic grid generation technique for two-dimensional (2D) morphing bodies and a block lower-upper symmetric Gauss-Seidel (BLU-SGS) implicit dual-time-stepping method for unsteady incompressible flows are presented for external bio-fluid simulations. To discretize the complicated computational domain around 2D morphing configurations such as fishes and insect/bird wings, the initial grids are generated by a hybrid grid strategy firstly. Body-fitted quadrilateral (quad) grids are generated first near solid bodies. An adaptive Cartesian mesh is then generated to cover the entire computational domain. Cartesian cells which overlap the quad grids are removed from the computational domain, and a gap is produced between the quad grids and the adaptive Cartesian grid. Finally triangular grids are used to fill this gap. During the unsteady movement of morphing bodies, the dynamic grids are generated by a coupling strategy of the interpolation method based on ‘Delaunay graph’ and local remeshing technique. With the motion of moving/morphing bodies, the grids are deformed according to the motion of morphing body boundaries firstly with the interpolation strategy based on ‘Delaunay graph’ proposed by Liu and Qin. Then the quality of deformed grids is checked. If the grids become too skewed, or even intersect each other, the grids are regenerated locally. After the local remeshing, the flow solution is interpolated from the old to the new grid. Based on the hybrid dynamic grid technique, an efficient implicit finite volume solver is set up also to solve the unsteady incompressible flows for external bio-fluid dynamics. The fully implicit equation is solved using a dual-time-stepping approach, coupling with the artificial compressibility method (ACM) for incompressible flows. In order to accelerate the convergence history in each sub-iteration, a block lower-upper symmetric Gauss-Seidel implicit method is introduced also into the solver. The hybrid dynamic grid generator is tested by a group of cases of morphing bodies, while the implicit unsteady solver is validated by typical unsteady incompressible flow case, and the results demonstrate the accuracy and efficiency of present solver. Finally, some applications for fish swimming and insect wing flapping are carried out to demonstrate the ability for 2D external bio-fluid simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号