首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
针对汶川地震引发的谢家店子滑坡,在现场调查分析的基础上,建立了二维离散元数值模拟模型,采用2D-Block软件对其进行了全过程的数值模拟研究,并通过对跟踪块体的深入分析,研究了相应地质体在不同阶段下的运动特征。模拟结果表明,谢家店子滑坡经历了剧动启程抛掷阶段、快速撞击飞行阶段、铲刮减速碎屑流阶段及堆积掩埋阶段。为了揭示地震引发高速滑坡的发生规律,分别研究了地震震级、斜坡地形和斜坡上岩块的尺寸对高速滑坡启动和运动过程的影响规律。地震震级对边坡的启动、变形、破坏和运动有很大的影响,地震震级越大,滑体启动的加速度和速度也就越大,从而易形成高速远程滑坡。斜坡体本身的地形地貌对滑体运动也有较大影响。在震级和岩石力学参数一定的条件下,斜坡上岩块的大小对其启动、变形和运动过程有一定影响,随着岩块的增大,滑体运动的每个阶段历时都在减小,但当岩体十分破碎时,滑体虽然能够运动,但是很难发生抛掷。将地震滑坡的启动机理概括为积累变形效应、振荡启程效应和振荡加速效应。  相似文献   

2.
岩石的碎裂化作为高速远程滑坡中的一种重要现象,其不仅是颗粒流假说的基础,也涉及到滑坡能量的耗散与传递作用。本文以西藏八宿县瓦来滑坡为例,通过遥感影像解译、野外调查和粒度试验等方法,对山谷型高速远程滑坡的地貌特征、堆积结构、运动学过程及碎裂化特征进行了分析和探讨。基于无人机航测数据构建的高精度数字高程模型,对瓦来滑坡的地貌结构进行了定量化分析。依据等高线特征与基岩分布特征重建了滑坡前地形并对瓦来滑坡的体积进行了估算。研究结果表明,瓦来滑坡是一个滑动面受节理控制的碎屑流型高速远程滑坡,其水平运动距离为3480m (H/L=0.32),其堆积方量约为5.12×10^7 m^3。瓦来滑坡的主要地貌结构有修剪线、巨型丘、纵向脊和压缩脊,这些地貌结构指示了滑坡启动后朝向NE48°方向运动,遇到山体阻挡后偏转向北。瓦来滑坡的外壳相较薄,明显受到岩层节理控制;滑体相中的堆积结构以分层结构、拼图结构、块石定向排列、块石剪切破坏为主,这些结构指示瓦来滑坡的层流运动特征,且其运动过程中,内部存在碰撞作用与剪切作用。滑体相中粒度沿程的变化特征表明瓦来滑坡的内部破碎主要发生在从滑坡源区经过流通区到坡脚的撞击过程中,为强破碎阶段;细颗粒的粒度分布特征和发育不明显的细粒剪切带指示该滑坡在径向运动阶段的破碎作用相对前者较弱,为弱破碎阶段。  相似文献   

3.
为获取“10·10”白格滑坡运动规律与特征,基于“10·10”白格滑坡发育的3大区(启动区、堆积区、冲击区)和6个运动阶段(主体失稳破坏、牵引区启动、高速临空滑跃、冲击对岸、折返相撞及水砂射流、堆积坝次级滑移),对滑坡碎屑体堆积状态及其在四川岸的冲击形态进行分析。采用谢徳格尔法及能量转化计算方法,选取滑坡体冲击高度的5个特征点,计算滑坡碎屑体在各运动阶段的运动速度。结果表明:主滑区阻滑区滑体以2.2 m/s的初速度启动,从启动区至剪出口,速度不断增大,5个特征点达到最大速度,分别为H1 67.0 m/s、H2 73.0 m/s、H3 73.7 m/s、H4 73.2 m/s、H5 68.3 m/s;牵引区滑体到达剪出口时,速度为70.2 m/s;主滑区阻滑区滑体的滑动速度具有从中间向两端递减的态势,其中滑坡主滑方向的中间位置速度最高,达73.7 m/s;滑体整体剧动时所释放的能量E至少为1010.8J,引起震动相当于4.0~4.7级的表层基岩地震。通过滑坡...  相似文献   

4.
地震碎裂滑动型滑坡发育特点及典型实例分析   总被引:3,自引:2,他引:1  
汶川地震诱发了大量的地震滑坡,其中地震碎裂滑动型滑坡是一种普遍的地震滑坡类型,滑动特征独特,动力机制复杂。以汶川县映秀镇牛圈沟滑坡为典型实例,从发育碎裂滑动的地貌、岩性、斜坡结构、地震作用等关键控制因素出发,阐释了牛圈沟滑坡的“滑动启动-碰撞碎裂-碎屑滑动-堆积停滞”4个阶段碎裂滑动中的7次折向过程,应用“地震启动-碎裂-加速”机理能够很好的解释地震滑坡超高速、滑程远、规模大的特点,具有一定的典型性和学科意义。  相似文献   

5.
高速远程滑坡碎屑流具有极高的动能和超远移动距离,是一种危害范围广、破坏力极大的地质灾害。目前研究多基于高速远程滑坡的效应机理,对于拦挡结构减灾作用研究较少,尚未形成完善的高速远程滑坡减灾体系,而数值模拟是研究碎屑流拦挡结构减灾作用的重要手段。本文采用数值流形方法对牛圈沟强震诱发滑坡所形成的高速碎屑流运动过程进行了模拟,分析其堆积状态以及运动特性,通过数值试验研究了碎屑流运动路径上植被覆盖、拦挡墙高度、位置以及布置方式对高速远程滑坡碎屑流堆积状态的影响,并对拦挡墙的减灾作用进行评价。不同于颗粒离散元方法,数值流形方法可以模拟任意形状块体相互接触、碰撞,从而避免了运动过程中圆颗粒滚动摩擦对模拟结果的影响。模拟结果表明,尽管在碎屑流运动路径上增加植被覆盖可降低碎屑流运动距离,为达到更好拦截碎屑流的效果,仍需在运动路径上布置拦挡墙,以有效降低碎屑流的沿程位移及远程堆积量。当拦挡墙布置于不同位置时,对滑坡碎屑流有不同的截流阻滑作用,并确定拦挡墙的最优位置。此外,相对于增加拦挡墙高度,设置多排拦挡墙可更加有效地拦截碎屑流以减少对下游的危害。  相似文献   

6.
2018年10月10日和11月3日,西藏自治区江达县白格村金沙江右岸先后2次发生滑坡堵江事件,堰塞湖与溃坝洪水给金沙江上游沿岸居民及其生产和生活设施带来巨大灾害。滑坡发生后,作者先后2次赶赴现场,参与灾害调查与救灾工作。基于现场调查,结合相关资料,对滑坡的形成机制与过程进行系统分析。结果表明:1)白格"10·10"滑坡是一个高位、高剪出口、高速非完全楔形体基岩滑坡,方量约107 m~3。2)滑坡地处金沙江缝合带,岩性为元古界熊松群片麻岩组,具有多期、多次变形与变质特点,糜棱岩化和蚀变很严重。3)滑坡按高程划分为3区,即前缘的阻滑区、中部的主滑区和后缘的牵引区,分割高程大致为3 500和3 000 m。主滑区为楔形体,系2组发育良好的结构面切割形成;阻滑区为四面体,由2组发育较差的结构面切割形成;牵引区为完全风化的岩土体夹团块状碎裂岩体。4)滑坡存在2个滑动方向,即主滑区的S80°E方向和阻滑区的N70°E方向,剪出口高程约2 950 m。5)主滑区楔形体重力是滑坡的主要动力来源,滑坡的孕育过程是相对完整的阻滑区岩体在主滑区重力驱动下的渐进破坏过程。6)滑坡过程如下:首先,主滑区和阻滑区启动;其次,失去支撑的牵引区再启动;随后,先启动的滑体高速撞击四川岸,逆坡爬高约95 m,并在两侧形成碎屑冲刷区;然后,先启动的滑体折返,并与后启动的滑体在河面上方相撞,冲击河水形成高速水砂射流,在两岸形成水砂射流冲刷区;而后,堰塞坝下游坡滑动,形成次级滑移区;最后,冲击产生的雨雾降落,完成滑坡坝表面冲刷。7)白格"11·3"滑坡是牵引区的部分岩土体在起阻滑作用的碎裂岩体渐进解体后下滑的结果,方量约3×106 m~3。8)牵引区目前严重变形的方量约5.50×106 m~3,存在再次滑坡与堵江的风险,需要采取合理的工程措施消除隐患。  相似文献   

7.
“5·12”汶川地震滑坡特征及失稳破坏模式分析   总被引:4,自引:2,他引:4  
“5·12”汶川特大地震不仅大幅度降低了地震区斜坡的稳定性,而且还诱发了大量滑坡等地质灾害。通过对灾区地震滑坡灾害进行野外深入调查,对“5·12”大型典型地震滑坡的基本特征等进行归纳、总结,并以青川县东河口滑坡为例,对该大型滑坡的基本特征及失稳破坏模式进行分析。分析得出,东河口滑坡是一个强震作用下的高速远程型坡体运动,其运动阶段大致可分为启程滑动、近程飞越、碰撞和远程流动3个阶段。该滑坡的失稳破坏模式可简单概括为拉裂→裂纹扩展、趋于贯通→斜坡失稳、凌空滑出→滑坡解体、流动→堆积。  相似文献   

8.
考虑到高速滑坡过程中的速度和变形的不均匀性、变形能的改变以及能量的损耗 ,提出一种可以模拟滑坡从失稳开始滑动到终止全过程的数值模型 ,可用来预测最大滑速和最大滑距及滑体形状的变化 .通过对天水锻压机床厂滑坡的滑速和滑距的验证及坡体形状的计算机模拟 ,证明了该方法的有效性 .结果表明 :滑坡形成高速的根本原因在于剧滑时综合摩阻力的下降 ,滑体后部在滑动过程中的较大重心落差是滑体高速运动的动力来源 ;在滑动的中间阶段 ,滑体经常呈现出整体运动的特征 ,而中前部土体在滑坡后则易处于松弛甚至拉伸的状态  相似文献   

9.
为了精细刻画盆地内火山斜坡堆积的岩相及其相结构,基于露头剖面和岩石样品观察分析的重要性,采用野外剖面地质研究和室内岩石样品成分、粒度组成分析相结合的方法,研究了松辽盆地东南缘露头区出露的营城组火山斜坡堆积相序与相结构.提出了包括热基浪、热碎屑流和空落3种亚相的火山斜坡爆发相单元结构.结果表明:爆发相由下到上为热基浪—热碎屑流—细空落亚相.其中热基浪亚相碎屑组成以刚性、炸裂状玻屑为主,粒度分析标准偏差0.93~1.26分选中等—好,偏度-1.85~3.46,显示牵引流粒度特征,发育层理构造;热碎屑流亚相碎屑组成主要是塑性—半塑性浮岩屑,少量炸裂状玻屑,粒度分析标准偏差0.87~1.65分选差,偏度-2.34~1.02,显示重力流粒度特征,顶部常发育浮岩屑层,浮岩屑变形程度与熔结程度呈近正相关,不发育层理构造;空落亚相,包括易识别的粗空落堆积和不易识别的细空落,刚性碎屑为主,分选好,常发育较好的水平层理,顶部常发育"火山豆".  相似文献   

10.
选取彭州市龙门山镇王家坪滑坡所处斜坡作为二元结构反倾开挖损伤斜坡的典型实例,进行了地震荷载作用下变形破坏的室内物理模型试验。结果表明,开挖加剧了斜坡在地震荷载作用下的变形破坏。从破坏形式来看,反倾斜坡的坡变形破坏分为2个部分,一为浅表覆盖层的整体滑动,二为反倾岩层受浅表覆盖层滑动牵引而发生倾倒—崩塌,与野外调查结果吻合。从整个变形破坏过程来看,可以划分为以下阶段:地震初始阶段(浅表覆盖层与基岩接触面逐渐贯通过程)—浅表覆盖层滑动启动阶段—浅表覆盖层全面滑动及基岩牵引—倾倒阶段。试验重现和揭示了斜坡的变形破坏过程和规律。  相似文献   

11.
堰塞坝是由崩塌、滑坡、泥石流等斜坡失稳体堵塞河流而形成的天然坝体。我国是堰塞坝的高发区,在作者统计的全世界范围内堰塞坝案例中,发生在我国的高达758例,占比59%。近年来,频发的地质构造活动和极端气候灾害(台风、暴雨、融雪等)诱发了大量的堰塞坝,严重威胁所在流域的生命财产安全。崩滑碎屑体堵江形成的堰塞坝通常结构松散、稳定性差、溃决程度大、溃决速度快,容易形成巨型洪灾,对下游生命财产造成更大危害。首先简要总结了一般堰塞坝堵江研究,阐明了崩滑型堰塞坝成坝特点。然后分析崩滑碎屑体运动及破碎机理和碎屑体堵江成坝机理研究,明确了颗粒破碎和水流条件对坝体形态特征、物质组成和稳定性的作用。崩滑碎屑体堵江通常有3种成坝模式:滑入型、爬高型和折返型,不同类型堰塞坝的稳定性具有显著差异。堰塞坝的稳定性与坝体关键特征参数(几何形态、坝体结构和物质组成)密切相关,而坝体特征参数又主要由崩滑体在运移过程中碰撞破碎和入河堵江时的固液耦合作用共同决定。考虑上述两种因素,结合物源性质、边坡地形、河谷及水流条件,本文提出了成坝影响因素与堰塞坝的空间形态、结构特征及稳定性的内在关系的研究思路,以便建立基于坝体稳定性快速评价的坝体特征预测模型。本研究的开展可为堰塞坝形成前坝体特征的事先预测以及堰塞坝形成后坝体稳定性的快速评估等方面的研究与实践提供重要理论依据。  相似文献   

12.
高速远程滑坡作为一种特殊的地质灾害,具有运动速度快、滑动距离远,致灾范围广等特征,一旦发生往往给人类的生命财产带来巨大的损失,因此,针对其超强运动机制的研究一直受到国内外滑坡领域的高度关注。液化减阻作为高速远程滑坡发生超强运动的一个重要机制,强调滑坡运动过程中出现超孔隙水压力累积、有效应力降低等液化行为,导致滑坡基底摩擦系数减小,发生高速远程运动。本文根据前人研究结果对液化的影响因素和高速远程滑坡的液化机制进行总结,将不排水加载作用下滑坡的液化机制归纳为结构液化和滑动带液化两种;并基于详细的现场调查对青藏高原地区两类典型的液化型高速远程滑坡(玉树滑坡和乱石包滑坡)的形成机制进行了初步分析。结果表明:玉树滑坡和乱石包滑坡在启动条件、运动和堆积地貌单元及液化机制等方面均有差异。玉树滑坡为发生于山间沟谷中、由强降雨诱发的崩坡积层滑坡,滑坡体积小但运动距离远,滑带土为堆积于沟谷中的饱和松散砂质黏土(细粒土),可忽略颗粒的剪切破碎性;不排水加载作用破坏了松散的土体结构,从而诱发滑坡液化;乱石包滑坡发生于山前盆地由古地震触发并斜抛启动,滑带土为风化的花岗岩粗砂,具有剪切易破碎性,土颗粒破碎引起滑动带液化是滑坡发生高速远程运动的主要原因。  相似文献   

13.
为研究泥石流受土体颗粒粒径的影响,将细砂和中砂按不同质量比配置6组不同颗粒粒径的试验试样,进行泥石流室内模型试验。试验结果表明:颗粒粒径对泥石流的形成模式具有重要影响,随着细砂含量的增加,泥石流的形成模式从滑坡型破坏变为流滑型破坏。当细砂含量小于40%时,坡体分层块体下滑,发生滑坡型破坏;当细砂含量大于40%时,坡体整体快速下滑,发生流滑型破坏。分析中砂坡体泥石流形成过程中孔隙水压力变化规律,揭示了降雨作用下泥石流形成过程中水土作用关系。本文结果为泥石流研究提供理论参考价值。  相似文献   

14.
为深入探索库水复活型滑坡的破坏模式和力学机制,设计研发新型试验装置,装置主体是由若干渗透盒构成的分段式滑面,能够模拟各种几何形态的滑动面。通过向不同区段的渗透盒注水,可模拟滑带土分阶段饱水软化,实现库水位上升条件下相邻滑块间的牵引滑动过程。采用传感元件、数码摄像以及数字图像处理等测试手段,获取滑带土体积含水率、孔隙水压力、坡面水平位移的变化规律以及后缘面演化特征,并探讨滑坡体失稳破坏模式。结果表明:滑带土饱水后抗剪强度大幅度下降是滑坡发生的重要条件,滑动面处的孔压变动是激发老滑坡复活的重要诱因;滑带处孔隙水压力的增大与滑坡位移的增大是同时发生的,滑带土强度衰减与滑体变形具有良好的相关关系;坡面变形区域分为强、弱变形区和牵引区3部分,坡面变形为1~1.5倍的失稳滑带长度;随着失稳滑带长度增加,坡面变形区域变大,对后侧稳定坡体的牵引变形影响变小;后缘破裂面多呈折线型滑面形态,后缘破裂面倾角试验值受失稳滑段位置和滑体厚度影响显著。研究结果为库区滑坡灾变机制的认识和治理提供重要依据。  相似文献   

15.
汶川地震灾区帽壳子滑坡形成泥石流的过程和特征   总被引:1,自引:0,他引:1  
实地调查了汶川地震灾区北川县帽壳子滑坡转化为坡面泥石流和沟道泥石流的基本特征和形成过程,并利用能量守恒原理和Takahashi泥石流运动模型对其运动特征进行了分析。结果表明:对于强震诱发的滑坡,其层间碎块石土体强度低,滑坡体内部裂隙发育,在强降雨作用下容易转化为泥石流;滑坡转化为坡面泥石流的过程为岩土体沿基岩面下滑→撞击→强碎屑化→流动→快速停积;滑坡转化为沟道泥石流的过程为滑坡体崩滑→弱碎屑化→水流掺混→掏蚀沟道→流动堆积;滑坡转化为坡面泥石流后,起始速度较快,但没有沟道限制和水力作用,因此运动阻力较大,冲出距离远小于沟道泥石流;利用Takahashi泥石流运动模型计算得到的沟道泥石流冲出距离与实际观察值比较吻合。  相似文献   

16.
汶川地震区特大泥石流工程防治新技术探索   总被引:3,自引:0,他引:3  
汶川地震在龙门山地区激发了大量的崩塌、滑坡,为泥石流的形成提供了丰富的松散固体物源,震后4年里泥石流非常活跃,暴发了数次特大规模泥石流.初步分析了2个典型泥石流防治工程失败的原因,发现对防治工程本身而言,主要因素在于目前大量采用的浆砌石结构抗冲击破坏能力弱.为了抵御特大泥石流的冲击破坏,初步提出了钢筋混凝土框架+浆砌石坝体式泥石流拦砂坝、预制钢筋混凝土箱体组装式拦砂坝的新型泥石流拦挡结构,以及复式断面泥石流排导槽、预制钢筋混凝土箱体组装式排导槽的新型泥石流排导结构,这些新结构可望在不大幅度增加工程投资的情况下,提高泥石流防治工程抗冲击破坏能力,缩短工程建设周期,保护流域生态环境,充分利用沟内现存材料.这些方法及其组合可望对特大泥石流进行有效的调控.  相似文献   

17.
针对川藏铁路沿线典型潜在滑坡灾害点,设计完成了几何相似比为1:10的含软弱夹层堆积体高陡边坡振动台试验,从堆积体边坡失稳破坏现象与动力响应规律等方面开展了系统研究,得出以下结论:边坡滑塌是一个均衡渐进的过程,地震初期,在重力和地震力耦合作用下,滑体表面出现土体剥落;随着地震动持续,滑体顶部开裂,滑体表面裂缝增多并向前缘...  相似文献   

18.
堰塞体一般在自然力作用下瞬间形成,堆积体具有空间结构复杂、坝料级配宽泛、稳定性差、易在水流冲刷下发生溃决等特点。堰塞体作为一种重大的水旱自然灾害,其安全评价和灾害预测是国内外学者关注的焦点,目前尚有很多问题需要解决,包括:(1)堆积体由天然宽级配土石料构成,表现出显著的状态相关性,缺乏正确描述这种宽级配堆石料的状态相关剪胀理论与本构模型;(2)堰塞体形成后,会受上游堰塞湖水位抬升、持续非稳定渗流、湖区滑坡涌浪、后期地震等外荷载作用的影响,缺乏稳定性评判的标准和方法;(3)堰塞体缺乏必要的洪水溢流设施,容易发生溃决,且溃决水流冲蚀过程呈明显的非线性特点,溃口水力要素指标呈强非恒定流特征,缺乏反映宽级配堰塞体材料冲蚀机理的溃决过程数学模型。为此,有必要采取现场勘查、多尺度物理模型试验、数值仿真等综合手段开展研究,揭示堰塞体外观形态、内部结构和材料宏观力学特性及其时空变异规律,提出状态相关(级配、孔隙比、应力水平)的宽级配堰塞体材料剪胀方程,建立能适应复杂应力路径的广义弹塑性本构模型与坝体极限平衡分析方法;开展大型水工模型试验和溃坝离心模型试验研究,揭示非恒定流作用下堰塞体材料的动态冲蚀特性与堰塞体溃口演化规律,建立非恒定流作用时溃口动边界条件下的挟砂水流冲蚀方程,提出考虑流固耦合的堰塞体溃决过程数学模型,实现堰塞体漫顶或渗透破坏溃坝全过程水流运动特征、坝料输移规律、溃口演化过程及结构失稳的数值模拟。综合可靠度理论与溃坝过程数值模拟方法,提出能考虑流固耦合的堰塞体渗流、变形、稳定和溃决过程的一体化数值仿真平台,构建堰塞体全生命周期安全评价与灾变模拟理论体系与方法,为提升我国堰塞体防灾减灾决策水平提供科学的理论与技术支撑。  相似文献   

19.
四川都江堰龙池“8.13”八一沟大型泥石流灾害研究   总被引:2,自引:0,他引:2  
2010年8月13日都江堰龙池八一沟在强降雨(75 mm/h)下导致强大雨水启动沟道及两侧松散堆积物后,冲毁各支沟内的拦挡坝,最终溃决形成规模巨大的过渡性泥石流。在八一沟大型泥石流灾害现场调查的基础上,首先对形成泥石流的地形、水源、物源3个基本条件进行了论述;其次分析了八一沟泥石流的特征和成因;再次计算了泥石流的动静力学参数:容重1.88 g.cm-3左右,泥石流的洪峰流量达1 082 m3.s-1,泥石流的屈服应力在6 700 Pa以上,一次泥石流固体总量为116×104m3,堆积扇上巨石的冲击力为2 449 t;最后分析了泥石流的发展趋势:八一沟流域内还存在大量崩滑体及沟道松散堆积体,在强降雨作用下,很容易再次启动,形成泥石流,造成灾害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号