首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abrasive wear properties of stir-cast A356 aluminum alloy-5 vol pct fly ash composite were tested against hard SiC p abrasive paper and compared to those of the A356 base alloy. The results indicate that the abrasive wear resistance of aluminum-fly ash composite is similar to that of aluminum-alumina fiber composite and is superior to that of the matrix alloy for low loads up to 8 N (transition load) on a pin. At loads greater than 8 N, the wear resistance of aluminum-fly ash composite is reduced by debonding and fracture of fly ash particles. Microscopic examination of the worn surfaces, wear debris, and subsurface shows that the base alloy wears primarily by microcutting, but the composite wears by microcutting and delamination caused by crack propagation below the rubbing surface through interfaces between fly ash and silicon particles and the matrix. The decreasing specific wear rates and friction during abrasion wear with increasing load have been attributed to the accumulation of wear debris in the spaces between the abrading particles, resulting in reduced effective depth of penetration and eventually changing the mechanism from two-body to three-body wear, which is further indicated by the magnitude of wear coefficient.  相似文献   

2.
AA6061-fly ash particle composites were fabricated using cold pressing followed by hot extrusion. Composites containing 2, 6 and 10 wt.% fly ash particles were fabricated. Matrix alloy samples without fly ash content were also prepared for comparison. Optical microscopy, Xray diffractrometry, Scanning Electron Microscopy and Transmission Electron Microscopy were adopted for characterizing the composites. Uniform distribution of fly ash particles was observed in composites. Hardness and tensile strength of the 2 wt.% fly ash composite were found to be better compared to the monolithic alloy after age-hardening. However, further increase of fly ash content resulted in poor age-hardening due to the depletion of Mg from the alloy matrix and transfer to the fly ash interface, which was confirmed by EDX analysis.  相似文献   

3.
In the present investigation, the microstructural, wear, tensile and compressive properties of Al?C7Si alloy matrix nano composites have been discussed. It is noted that the composites contain higher porosity level in comparison to the matrix and increasing amount of porosity is observed with the increasing volume fraction of the reinforcement phase in the matrix. The wear sliding test disclosed that the wear resistance of the nano SiC reinforced composites is higher than that of the unreinforced alloy. It is believed that the presence of SiC particles could shield the matrix and silicon phase from directly experiencing the applied load from the counterface. It was revealed that the presence of nano-SiC reinforcement also enhanced the hardness, tensile and compressive yield strength of Al?C7Si alloy which can be attributed to small particle size and good distribution of the SiC particles and grain refinement of the matrix. The highest yield strength and UTS was obtained by the composite with 3.5?vol% SiC nano-particles. The results show that the addition of nano-particles reduces the elongation of A356 alloy.  相似文献   

4.
《粉末冶金学》2013,56(4):474-479
Abstract

Aluminium (Al) silicon alloy fly ash composites were developed using powder metallurgy technique. Aluminium silicon alloy powder was homogenously mixed with various weight percentages of fly ash (5–15%) and uniaxially cold pressed at pressures ranging between 200 and 515 MPa, and the green specimens were sintered at temperatures between 575 and 625°C. The various properties of the Al alloy fly ash composites were studied and compared with that of base alloy. The density of Al alloy fly ash composites was lower than that of the base alloy. The sintered density of the Al alloy fly ash composites and Al alloy slightly decreased when compared to green density. The hardness of the Al alloy fly ash composites was higher than that of base alloy and it increased with the increase in weight percentage of fly ash content upto 12 wt-%. Compressive strength of the composites was lower than that of base alloy and it decreased with increasing weight percentage of fly ash. The electrical resistivity and corrosion rate of the composites were higher than that of base alloy and they increased with increasing weight percentage of fly ash. Scanning electron microscope was used to examine the microstructural characteristics of the composites. X-ray diffraction pattern was used to identify various phases present in Al alloy fly ash composites.  相似文献   

5.
none 《粉末冶金学》2013,56(1):54-59
Abstract

In the present study, A356–fly ash metal matrix composites were developed through powder metallurgy route. The composites were mixed by using the ball milling technique, shaped through uniaxial and cold isostatic compaction, and then sintered at 520°C. Scanning electron microscopy and X-ray diffraction were used for microstructure and phase characterisation. The density and microhardness of the composites were evaluated as a function of fly ash content, compaction pressure, sintering time and age hardening time. Uniaxial cold compaction of the composites increased their green density and cold isostatic compaction of the compacts led to a further increase in the density. At a constant compaction pressure, the density decreased with increasing fly ash content, resulting in light weight composites. The microhardness of the composites increased with the addition of 10 wt-% fly ash while it decreased with the addition of 20 and 30 wt-% fly ash. Sintering at 520°C increased the density of the composites and the grain size of the α-Al phase of the matrix. The matrix alloy and the composite containing 10 wt-% fly ash showed some response to age hardening at 160°C. However, no response to age hardening was observed at 200°C.  相似文献   

6.
Al-Si alloy A356 was modified by TiC nanoparticles. First, the nanoparticles were mechanochemically activated together with aluminum powder. Next, the activated particles were hot extruded in a home-made extruder. Finally, nanoparticles thus prepared in the aluminum matrix were added to the liquid Al-Si alloy, which was then cast into sand molds. A comparison of the microstructure and mechanical properties of the modified alloy thus produced with those of the alloy without the nanoparticles demonstrated that the grain size of the modified alloy decreased. The mechanical properties determined after T6 heat treatment indicated unusual behavior, where the elongation of the modified alloys increased by 20 to 50 pct in different regions of the cast, while the tensile strength remained unchanged and the hardness increased by 18 pct. An electron microscopy study revealed concentration of dislocations near grain boundaries in the modified alloy samples. These grain boundaries serve as obstacles to dislocation motion. It was therefore concluded that the improvement in the mechanical properties of the aluminum alloy modified by TiC nanoparticles was caused by the grain-size-strengthening mechanism.  相似文献   

7.
8.
In the present work, A356 alloy and in situ A356-5TiB2 composite feedstock was produced by employing Cooling slope casting technique. The technique resulted in near spherical morphology of primary α-Al phase in the feedstock of both the alloy and composite. A fine distribution of eutectic Si phase within the matrix was observed in the composite feedstock. The rheocast billets of both the alloy and composite were then thixoformed successfully at 50 % solid fraction temperatures of 580 and 585 °C respectively. Further, tensile properties of thixoformed alloy and composite were measured and compared with those of gravity-cast samples. It was observed that the % increase in yield strength and tensile strength of thixoformed alloy increased by 43 and 36 % respectively with respect to the gravity-cast alloy. The thixoformed composite attained the highest ultimate tensile strength of 211 MPa which is about 40 % higher as compared to gravity-cast alloy. Interestingly, the ductility of the composites is comparable to that of alloy after thixoforming.  相似文献   

9.
The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the effect on the mechanical properties and microstructure of the automotive A356 aluminum alloy reinforced with 0.2 (wt.%) Al-6Ce-3La (ACL) was investigated. The ACL was added to the melted A356 alloy in the as-received condition and processed by mechanical milling. In the second route, the effect of the ACL processed by mechanical milling and powder metallurgy techniques was investigated, and compared with the results obtained from the A356 alloy strengthened with ACL in the as-received condition. Microstructural properties were evaluated by means of X-ray diffraction in order to observe the solubility of Ce/La in the Al matrix. In addition, electron microscopy was employed in order to investigate the effect of milling time on the size and morphology of La/Ce phase under milling process. Mechanical properties of the A356 alloy modified with ACL were measured by hardness and tensile test. For comparison unmodified specimens of the A356 were characterized according to the previous procedure. The microstructural and mechanical characterization was carried out in specimens after solution and artificial aging. Observations in scanning electron microscopy indicated a homogeneous dispersion of La/Ce phases by using both routes; however, mechanical results, in the modified A356 alloy with the ACL in the as-received condition, showed an improvement in the mechanical performance of the A356 alloy over that reinforced with the ACL mechanically milled.  相似文献   

10.
The mechanical properties and microstructure of 7075 aluminum alloy during the two-stage aging process have been studied by means of Rockwell hardness test, tensile test, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM) and high-resolution TEM. The results illustrated that there existed double peaks for both the hardness and strength in 7075 aluminum alloy during the two-stage aging process. Furthermore, the aging time to reach the second peak was obviously shortened compared to single-stage aging process. At the first peak aging state, the strengthening effect of the alloy was dominated by high-density GP zones, but η′ phase (MgZn2) was mainly the strengthening phase at the second peak aging state.  相似文献   

11.
Thermodynamic analysis indicates that there is the possibility of chemical reactions between aluminum melt and cenosphere fly ash particles. These particles contain alumina, silica, and iron oxide, which, during solidification processing of aluminum-fly ash composites or during holding of such composites at temperatures above the melting temperature of aluminum, are likely to undergo chemical reduction. These chemical reactions between the fly ash and molten aluminum have been studied by metallographic examination, differential thermal analysis (DTA), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX) and X-ray analysis after holding the aluminum-fly ash composites for different periods above the liquidus temperature. The experiments indicate that there is progressive reduction of silica and mullite in the fly ash, and formation of alumina with holding time of composites at a temperature of 850 °C. The walls of the cenosphere fly ash particles progressively disintegrate into discrete particles as the reaction progresses. The rate of chemical reaction was high at the start of holding the composite at a temperature of 850 °C, and then the rate significantly decreased with time. The reaction was almost complete after 10 hours.  相似文献   

12.
Reduced weight of automobiles for the purpose of fuel economy has encouraged the use of light metals especially aluminium alloys. A356 Al alloy containing 7% Si and 0.3% Mg is widely used in automobile and aircraft industries due to excellent castability, good corrosion resistance and good pressure tightness. A356 is age hardenable alloy and there is appreciable improvement in strength and hardness achievable due to precipitation of intermetallic compound Mg2Si. In the present investigation, aluminium alloy A356 with and without rare earth (RE) addition (0.5 wt%) was subjected to single ageing as well as double aging treatment. The results were compared for mechanical properties like hardness and ultimate tensile strength with the material not containing RE additions.  相似文献   

13.
A process for preparing zinc alloy castings containing dispersions of zircon particles is described. Composites were prepared by stirring zircon particles in Zn-4Al-3Cu (ZAS) alloy melts and subsequently casting these melts in permanent molds. It was found that additions of zircon resulted in an increase in the sliding wear resistance and in the proportional limit in compression. The aging characteristics of the ZAS alloy have also been investigated by hardness tests, dilatometry technique, and transmission electron microscopy observations. There are two kinds of precipitates that occur during the aging process. The α-phase precipitates from the ŋ phase in the early stage of aging and the copper-rich ɛ-phase precipitates from the ŋ phase in the later stage of aging. Therefore, there are two peaks in the hardening curve caused by both a-phase and ŋ-phase precipitation. The a-phase precipitation induces the dimensional shrinkage, and the copper-rich ŋ phase precipitation results in dimensional expansion. Zircon particles existing in ZAS alloy reduce the maximum shrinkage from 353 × 10-6 for the monolith to 167 × 10-6 for the composite. Two groups of parallel a-phase plates had formed within the ŋ dendrite during aging at 95 °. The orientation relationship between the a phase and matrix was determined as [άcr1l01]ŋ//[lάrc10]a, (1120)ŋ/(lll)α.  相似文献   

14.
A metal matrix composite (MMC) of 2014 aluminum alloy reinforced with 15 vol pct SiC particulate was produced by the spray-forming-deposition process. The as-deposited preform revealed a high density and a homogeneous reinforcement distribution. Reactive products were not found on interfaces between the reinforcement and the matrix. Compared to the control alloy, the composite showed accelerated aging after solutionizing at 502 °C, while aging was retarded after solutionizing at 475 °C. Analysis indicated that the activation energy was almost the same for the aging process after different solutionizing treatments. This suggested that while the thermal barrier for the aging process was the same, other factors affecting the aging process should be considered. For example, the effective concentration of the precipitate forming elements possibly decreased after incompletely solutionizing at 475 °C. After heat treatment, the composite showed a tensile strength similar to the control alloy. The wear resistance of the composite improved considerably. The aging behavior of the composite was also studied using the nanoindentation technique. Steep gradient distribution of elastic modulus and hardness around the reinforcement SiC particulate was observed. Theoretical analysis showed that this could be attributed to the gradient distribution of precipitates, resulting from a gradient distribution of dislocation density around the SiC particulates caused by residual thermal misfit stresses.  相似文献   

15.
The present work pertains to investigation carried out on the feasibility of locally modifying the surface properties of cast aluminium alloy A356 using friction stir processing (FSP). The friction stir processed zone was characterized by metallography, electron micro probe analysis, hardness, dry sliding wear and potentio dynamic polarization testing. Hardness mapping showed that stir zones experienced increase of 40% compared to the as-cast metal. Further uniform micro-hardness was observed in the friction stir processed zone, which was not the case with as-cast A356 aluminum alloy. The FSP of cast A356 alloy exhibited excellent wear resistance, which is attributed to break-up of the coarse silicon rich eutectic particles, dendrite structure and homogenous distribution of fine Si particulates throughout the α-Al matrix due to intense plastic deformation and mixing during friction stir processing. The friction stir processed zone was also found to have adequate corrosion resistance. This work demonstrates that friction stir processing is an effective strategy for enhancement of wear and pitting corrosion resistance of as cast aluminum alloys  相似文献   

16.
The effects of nano particles on double shear strength and tribological properties of A356 alloy reinforced with Al2O3 nano particles of size 30 nm were investigated. The percentage inclusions of Al2O3 were varied from 0.5 to 1.5 wt%. The particles were added with stirring at 400 rpm and squeeze casting at 750 °C and pressure of 600 MPa in a squeeze casting machine. Comparison of the performance of as cast samples of A356/Al2O3 nano composite was conducted. The tribological properties of the samples were also investigated by pin-on-disk tests at 10, 30 and 50 N load, sliding speed 0.534 m/s and sliding distance 1100 m in dry condition. SEM images of microstructure analysis of the composite, Al2O3 (0.5 and 1 %) particles were well dispersed in the A356 alloy matrix. Partial agglomeration was observed in metal matrix composite with higher (1.5 %) Al2O3 particle contents. The nano dispersed composites containing 0.5 and 1 wt% of Al2O3 nano particles exhibited the highest double shear strength, lesser wear loss and coefficient of friction.  相似文献   

17.
《Acta Metallurgica Materialia》1992,40(12):3299-3315
The microstructure and microchemistry of an underaged and overaged AlZnMgCu alloy matrix composite reinforced with 20 vol.% SiC was examined uusing analytical electron microscopy. The presence of MgO particles at the Al/SiC interfaces and Mg2Si in the matrix of the composites suggests that Mg could be depleted in the matrix. The precipitates in the unreinforced control alloys were found to be consistently larger than those of the composites following the same heat treatment conditions, suggesting that the aging kinetics of the unreinforced control alloy are faster than those in the composite. Data on the aging acceleration in other Al-alloy matrix composites has been analyzed to study aging kinetics. Aging acceleration was found to be more pronounced with increasing average absolute values of the atomic size misfit parameters of the constituent elements of the major precipitates. This result suggests that the preferential segregation of solute atoms and easier nucleation of precipitates from segregated solutes is responsible for aging acceleration in other composites. On the other hand, the depletion of Mg atoms in the matrix and the lack of interaction between Zn atoms and dislocations seems to be responsible for the aging deceleration in the reinforced AlZnMgCu alloy composites.  相似文献   

18.
The age-hardening precipitation reaction in aluminum matrix composites reinforced with discontinuous alumina fibers was studied using the differential scanning calorimetry (DSC) technique, microhardness tests, and transmission electron microscopy (TEM) observation. Composites fabricated with the 2024 alloy matrix were infiltrated through a ceramic preform using a squeeze-casting process. The alumina fibers had a considerable effect on the aging response of the matrix alloy in composites. Alumina fibers caused suppression of Guinier—Preston (GP) zone formation in composite that reduced the peak hardening during artificial aging. The suppression of GP zone formation in composites is believed to be due to the fiber-matrix interface, which acts as a sink for vacancies during quenching. Moreover, the presence of reinforcement does not alter the kinetics of the subsequent artificial aging of these Al2O3/2024Al composites.  相似文献   

19.
The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy   总被引:3,自引:0,他引:3  
The effect of quenching condition on the mechanical properties of an A356 (Al-7 wt pct Si-0.4 wt pct Mg) casting alloy has been studied using a combination of mechanical testing, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). As the quench rate decreases from 250 °C/s to 0.5 °C/s, the ultimate tensile strength (UTS) and yield strength decrease by approximately 27 and 33 pct, respectively. The ductility also decreases with decreasing quench rate. It appears that with the peak-aged condition, both the UTS and yield strength are a logarithmic function of the quench rate,i.e., UTS orσ y =A logR +B. The termA is a measure of quench sensitivity. For both UTS and yield strength of the peak-aged A356 alloy,A is approximately 32 to 33 MPa/log (°C/s). The peak-aged A356 alloy is more quench sensitive than the aluminum alloy 6063. For 6063,A is approximately 10 MPa/log (°C/s). The higher quench sensitivity of A356 is probably due to the high level of excess Si. A lower quench rate results in a lower level of solute supersaturation in the α-Al matrix and a decreased amount of excess Si in the matrix after quenching. Both of these mechanisms play important roles in causing the decrease in the strength of the peak-aged A356 with decreasing the quench rate.  相似文献   

20.
Aging of composite materials (CMs) based on an aluminum D16 alloy and reinforced by Al3Ti intermetallic inclusions (0–10 vol %) having formed upon an in situ reaction and by SiC particles (0–30 vol %) ≤3 or 28 μm in size is studied. Oxide ceramic nanoparticles (0.1 wt %) are used to modify the structure of the CMs. The structures of the CMs before and after aging are analyzed by optical microscopy and scanning electron microscopy on a microscope equipped with an X-ray energy dispersive spectrometer. The hardness of the CMs is measured. The overall hardening of aged CMs is shown to result from a competition between the hardening effects induced by the formation of Guinier-Preston zones and the precipitation of the high-temperature θ and S phases. These effects are controlled by the dislocation density in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号