共查询到18条相似文献,搜索用时 62 毫秒
1.
采用乙醇和氢气作为工作气体,利用微波等离子体化学气相沉积法在较低的沉积温度下制备了金刚石薄膜,用扫描电子显微镜(SEM)、Raman光谱、X射线衍射仪(XRD)和红外光谱研究了薄膜的结构和性质.结果表明:在450 ℃的基片温度下,利用乙醇和氢气在优化的工艺条件下可得到具有微晶结构的金刚石薄膜. 相似文献
2.
采用微波等离子体辅助化学气相沉积法成功地在280~445℃沉积了金刚石薄膜。发现低温沉积的金刚石薄膜的形核密度随着温度的降低可得到极大提高;表面粗糙度随着温度的降低可得到大幅度的降低。 相似文献
3.
采用微波等离子体增强化学气相沉积方法(MPECVD),利用氢气和甲烷混合气体,在抛光石英基片上低温沉积出金刚石薄膜。用扫描电子显微镜(SEM)、激光拉曼光谱仪(Raman)和傅立叶红外光谱仪(FTIR)对薄膜的表面形貌、颗粒尺寸、纯度和光学透过性能进行了表征。通过SEM发现,得到的金刚石薄膜的颗粒尺寸为0.2~0.3μm,形核密度超过109cm-2,从薄膜形貌可以发现,较高温度有利于提高薄膜的生长速率和颗粒尺寸的均匀性。通过拉曼光谱和红外透射光谱分析发现,较高温度下沉积的薄膜具有较高的金刚石相含量,薄膜的光学透过性能也相对较好。 相似文献
4.
本文报导采用最新的微波等离子体技术在硬质合金刀具上沉积的碳膜的结构.经扫描电镜、拉曼光谱、X射线衍射和光电子能谱分析,确定此沉积膜为类金刚石薄膜,其结构既不同于具有完整空间排列规律的金刚石结构,也不同于空间排列无层次的无定形碳膜结构,而是介于二者之间. 扫描电镜观察还表明,沉积膜与基体附着性和耐磨性能良好。 相似文献
5.
采用微波等离子体化学气相沉积法在硬质合金基体上制备金刚石薄膜,研究了铜过渡层和酸蚀脱钴两种基体前处理工艺以及在施加铜过渡层的情况下,不同的沉积气压和基片温度对金刚石薄膜的质量的影响。结果表明,在施加铜过渡层后,在适中的沉积条件下(沉积气压6.0kPa,基片温度约为780度)可得到质量较好的金刚石薄膜。 相似文献
6.
7.
采用多模谐振腔微波等离子体CVD在不同基片温度下制备了纳米金刚石薄膜,通过扫描电子显微镜(SEM)、原子力显微镜(AFM)和拉曼光谱测试,研究了基片温度对纳米金刚石薄膜性能的影响.结果表明:在其他工艺条件不变时,基片温度对薄膜性能具有较大的影响,较低的基片温度更有利于制备高质量的纳米金刚石薄膜,实验所获得的优化基片温度为720℃左右. 相似文献
8.
9.
微波CVD法低温制备纳米金刚石薄膜 总被引:1,自引:0,他引:1
利用甲醇和氢气的混合气体,用微波等离子体CVD方法在480℃下成功地在硅片表面制备出纳米金刚石薄膜,本文研究了甲醇浓度和沉积温度对金刚石膜形貌的影响.通过Raman光谱、原子力显微镜及扫描隧道显微镜对样品的晶粒尺寸及质量进行了表征.研究结果表明:通过提高甲醇浓度和降低沉积温度可以在直径为50mm的硅片表面沉积高质量的纳米金刚石薄膜,晶粒尺寸大约为10~20nm,并对低温下沉积高质量的纳米金刚石薄膜的机理进行了讨论. 相似文献
10.
火焰法沉积金刚石薄膜的研究 总被引:1,自引:0,他引:1
1988年,日本学者Hirose[1]首次用O_2/C_2H_2火焰法在大气条件下沉积出金刚石薄膜,立即引起世界各国的极大兴趣。本文用O_2/C_2H_2和O_2/C_3H_8火焰在Ti-6Al-4V合金衬底上成功地沉积出金刚石薄膜。图1是喇曼光谱分析结果。在1333cm~(-1)处出现一条很尖锐的金刚石特征喇曼峰,1552cm~(-1)为无定型碳的喇曼峰,其强度很弱,表明非金刚石相含量极少。金刚石喇曼峰 相似文献
11.
采用形核 甲烷/氢气生长-辅助气体/甲烷/氢气生长的新工艺,在镜面抛光的单晶硅片上制备了金刚石膜,并用扫描电子显微镜和激光拉曼光谱等测试方法对薄膜的表面形貌和质量性能进行了表征;研究了添加辅助气体对已有金刚石晶型生长的影响.结果表明:以甲烷/氢气为气源时,金刚石膜生长率一般为1.8 μm/h,当分别加入氧气、二氧化碳、氮气时,其生长率都有所提高,其中加入二氧化碳时,其生长率是甲烷/氢气为气源的3倍多,但是加入氩气时,其生长率下降;通过新工艺,在加入氮气或氩气时,第一生长阶段为微米,而第二生长阶段为纳米尺寸,最后制备出具有微/纳米双层复合金刚石膜. 相似文献
12.
基片温度对金刚石厚膜生长的影响 总被引:1,自引:0,他引:1
采用微波等离子体化学气相沉积(MPCVD)法制备了Ф60mm的金刚石厚膜,通过对沉积过程和结果的观察发现,由于所用沉积气压较高,基片不同区域温度不均匀,导致不同区域沉积的金刚石厚膜晶型差距较大.通过对不同区域的结果进行比较,发现850℃为较好的沉积温度,并在对沉积工艺进行优化后,采用该温度在Ф60mm的基片上制备了厚度为0.6mm取向性很好的金刚石厚膜. 相似文献
13.
基片温度对纳米金刚石薄膜掺硼的影响 总被引:1,自引:0,他引:1
采用微波等离子体化学气相沉积法,以氢气稀释的乙硼烷为硼源进行了纳米金刚石(NCD)薄膜的生长过程掺硼,研究了基片温度对掺硼NCD薄膜晶粒尺寸、表面粗糙度、表面电阻和硼原子浓度的影响.利用扫描电子显微镜和原子力显微镜观察NCD薄膜的表面形貌,并通过Imager软件对原子力显微镜数据进行分析获得薄膜的表面粗糙度及平均晶粒尺寸信息;采用四探针测量掺硼NCD薄膜的表面方块电阻,利用二次离子质谱仪对掺杂后NCD薄膜表面区域的硼原子浓度进行测量.实验结果表明,较高的基片温度有利于提高薄膜的导电能力,但随着基片温度的提高,NCD薄膜的平均晶粒尺寸和表面粗糙度逐渐增大;此外,当反应气体中的乙硼烷浓度一定时,掺杂后NCD薄膜的表面硼原子浓度随基片温度升高存在一个饱和值.在所选乙硼烷浓度为0.01%的条件下,基片温度在700℃左右可以在保证薄膜表面电性能的基础上保持较好的表面形貌. 相似文献
14.
采用甲烷和氢气作为气源,在直径为50 mm的抛光单晶硅片上,利用新型微波等离子体化学气相沉积(MPCVD)装置制备出金刚石膜.用扫描电子显微镜观测金刚石膜的表面形貌,利用激光Raman光谱表征金刚石膜的质量以及X射线衍射检测金刚石膜的成分和晶界缺陷.结果表明V(CH4)/V(H2)为1%,基片温度为845℃时,生长金刚石膜的质量较好,并且具有完整的晶体形貌,但是扫描电子显微镜图×5 000倍时,观察到金刚石膜中明显的晶体缺陷存在,同时X射线衍射图表明金刚石膜的内应力较大. 相似文献
15.
柱状生长的CVD金刚石膜生长面非常粗糙,并且粗糙度随着膜厚的增加而增加,限制了它的应用,必须对其抛光,本文采用了机械研磨法来研磨CVD金刚石厚膜,研磨速率达6.1μm/h,厚度去除了36.9μm,粗糙度Ra从5.9μm降至0.19μm. 相似文献
16.
为了提高微波等离子体化学气相沉积CVD金刚石膜的速率,通过对微波源的磁控管、装置的冷却系统及真空密封技术三方面的改进,当微波频率为2.45 GHz、输出有效功率为6.0 kW以上时,装置能够长期稳定地运行;并在微波输入功率4.5 kW、CH4质量分数1.2%、气体流量150 SCCM、沉积气压9.5 kPa、基片温度(900±10)°C、沉积时间240 h的沉积工艺条件下(衬底上加上-150 V偏压),成功地在硅片上快速沉积出了厚度为500μm的金刚石厚膜,平均沉积速率为2.1μm/h,沉积膜的拉曼光谱图和SEM照片表明沉积出金刚石膜的质量很好. 相似文献
17.
Fan-xiu Lü 《北京科技大学学报(英文版)》2010,17(2):246-250
The Mo substrate with Zr interlayer,namely composite substrate,was employed to solve the problem of crack formation in the freestanding diamond film deposition.Freestanding diamond films deposited on the composite substrates by the direct current arc plasma jet chemical vapor deposition(CVD) method were investigated with scanning electron microscopy(SEM),X-ray photoelectron spectroscopy (XPS),X-ray diffraction(XRD),and Raman spectroscopy.In addition,the stress distribution during the large area freestand... 相似文献
18.
利用高功率微波等离子体化学气相沉积方法在硅衬底上沉积了多晶金刚石薄膜,然后利用电子束蒸发方法在金刚石薄膜表面上沉积了5 nm厚的Pt薄膜.利用Pt的自组织化效应,再通过氢等离子体照射、氧等离子体刻蚀、王水处理等手段,使金刚石薄膜表面形成了纳米针.利用拉曼光谱和扫描电子显微镜(SEM)表征金刚石薄膜的结构,拉曼光谱显示在1 315 cm-1处出现纳米金刚石特征峰,SEM显示纳米针均匀地直立在金刚石薄膜表面,每平方厘米大约含有108个纳米针,纳米针的平均高度约为1 μm. 相似文献