首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crack closure behaviour of microstructurally small fatigue cracks was numerically simulated by combining the crack-tip slip band model with the plasticity-induced crack closure model. A Stage II crack started to propagate from an initiated Stage I crack. When the plastic zone was constrained by the grain boundary or the adjacent grain with higher yield stresses, the crack opening stress increased with crack extension, and the effective component of the stress range decreased. The crack-tip opening displacement range (Δ CTOD ), first decreased with crack extension due to the development of the residual stretch, then increased until the tip of the plastic zone reached the neighbouring grain boundary. When the plastic zone was blocked by the grain boundary, Δ CTOD began to decrease. The arrest condition of cracks was given by the threshold value of Δ CTOD . At the fatigue limit, the arrest of small cracks takes place just after the Stage II crack crosses the grain boundary when the grain boundary does not act as a barrier. Only when the grain boundary has a blocking strength and the yield stress of adjacent grains is not so high, the arrest of Stage II cracks takes place before the crack reaches the grain boundary. The fatigue limit decreases with the mean stress. The predicted relation between the fatigue limit and the mean stress is close to the modified Goodman relation.  相似文献   

2.
In situ observations of crack propagation in sulfur-doped coarse-grained nickel were performed for the specimens with grain boundary microstructure pre-determined by SEM/EBSD analysis. The role of grain boundary microstructure was studied in the crack propagation in nickel embrittled by grain boundary segregation of sulfur. It was found that the main crack tends to predominantly propagate along random boundaries, and the crack propagation rate can be locally accelerated at the grain boundary network with a high connectivity of random boundaries. On the other hand, the cracks can propagated along fracture-resistant low-Σ coincidence site lattice (CSL) boundary only when the trace of the grain boundary is arranged being almost parallel to slip bands in the adjacent grains. The local crack propagation rate was found to become lower when a crack propagated along low-Σ CSL boundaries. Moreover, when the crack propagation is inhibited by low-Σ CSL boundaries, the branching of propagating crack occurs at partially cracked triple junctions. The crack propagation can locally slow down due to the occurrence of crack branching. The optimum grain boundary microstructure for the control of sulfur segregation-induced brittle fracture is discussed on the basis of new findings obtained from the in situ observations on crack propagation and fracture processes in polycrystalline nickel.  相似文献   

3.
SHORT CRACK FATIGUE BEHAVIOUR IN A MEDIUM CARBON STEEL   总被引:1,自引:1,他引:0  
The initiation stage and short crack behaviour in torsional fatigue of a 0.4% C steel was investigated by a replication technique. The fatigue cracks initiated and propagated in the ferrite phase which is located at the prior austenite grain boundaries in the form of long allotriomorphs. At this stage of crack development it is proposed that crack growth rate depends on the extent and intensity of plasticity at the tip of the crack. Crack growth per cycle is correspondingly proportional to the strength of the slip band. The ferrite-pearlite boundaries are strong barriers to crack propagation, which is manifested by a deceleration of growth and possible arrest. On raising the stress level the previously non-propagating cracks may continue to grow by branching or joining with other cracks in the ferrite phase. This process is repeated until the stress fields of one or more dominant cracks attain a critical value to sustain continued growth that leads to failure.  相似文献   

4.
In this project the initiation and propagation of short fatigue cracks in the metastable β‐titanium alloy TIMETAL®LCB is investigated. By means of an interferometric strain/displacement gauge system (ISDG) to measure the crack opening displacement (COD) and the electron back scattered diffraction technique (EBSD) to determine the orientation of individual grains the microstructural influence on short crack initiation and growth can be characterized. Finite element calculations show a high influence of the elastic anisotropy on the initiation sites of cracks. Crack propagation takes place transgranulary along slip planes as well as intergranulary along grain boundaries. The crack growth rate depends strongly on the active mechanism at the crack tip which in turn is influenced by crack length, the applied stress and the orientation of the grains involved. The value of the steady state crack closure stress changes from a positive value at low applied stresses (roughness induced) to a negative one at higher applied stresses (due to plastic deformations at the crack tip). The crack growth simulation is realised by a two‐dimensional boundary element technique, which contains the ideas of Navarro und de los Rios. The model includes the sequence of the applied stress amplitude as well as the experimental measured roughness induced crack closure.  相似文献   

5.
Plastic deformation and fracture in aluminum polycrystalline aggregate were investigated experimentally. A series of tensile specimens with a single edge crack were made of coarse-grained aluminum plates. The in-plane moiré technique was used to quantitatively obtain the deformation field around the crack tip. The strain field ahead of the crack tip prior to crack growth, as well as grain rotations during the course of plastic deformation, were evaluated from the corresponding moiré fringe patterns. The results of this study show that for small plastic deformation, grain rotation starts to take place at the very beginning of the plastic deformation and increases proportionally with plastic strain. The plastic strain ahead of the crack tip prior to crack growth drops significantly with decreasing average grain size of the specimen. Grain boundary sliding was also observed at some of the grain boundaries where the resolved shear stress had reached a critical value. The results also show that the crack propagated with maximum velocity at the center of a grain and assumed much slower velocity near grain boundaries or grain boundary junctions. The influence of the deformation rate is also discussed in terms of the stress relaxation.  相似文献   

6.
Short fatigue crack propagation often determines the service life of cyclically loaded components and is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of these stage I-cracks is presented. Cracks are discretised by displacement discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed as well as an influence on the crack path.  相似文献   

7.
In situ SEM observations (Zhang JZ. A shear band decohesion model for small fatigue crack growth in an ultra-fine grain aluminium alloy. Eng Fract Mech 2000;65:665–81; Zhang JZ, Meng ZX. Direct high resolution in-site SEM observations of very small fatigue crack growth in the ultra fine grain aluminium alloy IN 9052. Script Mater 2004;50:825–28; Halliday MD, Poole P, Bowen P. New perspective on slip band decohesion as unifying fracture event during fatigue crack growth in both small and long cracks. Mater Sci Technol 1999;15:382–90) have revealed that fatigue crack propagation in aluminium alloys is caused by the shear band decohesion around the crack tip. The formation and cracking of the shear band is mainly caused by the plasticity generated in the loading part of a load cycle. This shear band decohesion process has been observed to occur in a continuous way over the time period during the loading part of a cycle. Based on this observation, in this study, a new parameter has been introduced to describe fatigue crack propagation rate. This new parameter, da/dS, defines the fatigue crack propagation rate with the change of the applied stress at any moment of a stress cycle. The relationship between this new parameter and the conventional da/dN parameter which describes fatigue crack propagation rate per stress cycle is given.Using this new parameter, it is proven that two loading parameters are necessary in order to accurately describe fatigue crack propagation rate per stress cycle, da/dN. An analysis is performed and a general fatigue crack propagation model is developed. This model has the ability to describe the four general type of fatigue crack propagation behaviours summarised by Vasudevan and Sadananda (Vasudevan AK, Sadananda K. Fatigue crack growth in advanced materials. In: Fatigue 96, Proceedings of the sixth international conference on fatigue and fatigue threshold, vol. 1. Oxford: Pergamon Press; 1996. p. 473–8).  相似文献   

8.
Using Monte Carlo simulation, the statistical properties of intergranular crack trajectories in polycrystalline materials are estimated. The polycrystalline microstructures are two dimensional and are modeled by a Poisson–Voronoi tessellation for the grain geometry and a uniform orientation distribution function for the crystallographic orientation. A heuristic is introduced for determining the path of crack propagation when the crack tip arrives at a grain boundary triple junction. This heuristic applies a combination of two criteria for determining the direction of crack propagation, the maximum circumferential stress criterion, and a criterion in which the crack is assumed to propagate in the direction with the least material resistance. The resistance of grain boundaries is assumed to be related to the crystallographic misorientation at the grain boundary. The trajectories of microcracks can be treated as a random process, and simulation results indicate that the crack process exhibits linear variance growth, the rate of which is related to the importance attached to the circumferential stress and the material resistance in determining the direction of propagation. The rate of variance growth is shown to vary with the average grain diameter, so that microcracks in polycrystals with small grain size will exhibit less spatial uncertainty. The statistics and distributions of the increments of the crack process are also given. Through a small change made to the normalization applied to non-dimensionalize the statistics, the results are extended to polycrystals that have spatially varying grain size. Finally, a probabilistic model is proposed that is able to produce synthetic crack trajectories that replicate the important statistical properties of the simulated cracks. Such a model may prove useful in studies of the transition from micro to macrocracking.  相似文献   

9.
A theoretical model for the effects of grain size on the magnitude of roughness induced crack closure (RICC) at fatigue crack growth threshold has been proposed. With the basic configuration of a crack propagating incrementally along planar slip bands and deflecting at grain boundaries, an idealized zig-zag crack path is considered. The effective slip band length is considered to be equal to grain size. It is assumed that the dislocations emitted from the crack tip upon loading to form the pile-up are completely irreversible to produce a comnined mode I and mode II displacement at the crack tip. The assumption of continuously distributed dislocations in the pile-up facilitated the calculation of crack tip sliding displacement (CTSD) along the slip plane from which the mode I closure disregistry just behind the crack tip can be calculated. The closure stress intensity factor at threshold, K el,th could then be expressed as a function of critical resolved shear stress, average macroscopic yield stress, angle subtended by the slip plane with the crack plane and the length of the slip band. Comparisons of the predicted trends with experimental data from various alloy systems indicate good agreement.
Résumé On propose un modèle théorique pour décrire les effets de la taille du grain sur l'importance de la rugosité associée à la fermeture d'une fissure lors du franchissement du seuil de propagation en fatigue. On considère un chemin de fissuration en zig-zag idéalisé, avec une configuration de base d'une fissure qui se propage par incréments le long des bandes de glissements et par déviations aux frontières des grains. La longueur effective d'une bande de glissement est prise comme égale à la taille du grain. On suppose que les dislocations émises de l'extrémité de la fissure sous charge et qui forment l'empilement, sont totalement irréversibles au point de produire un déplacement combiné de mode-I et de mode-II à cette même extrémité. L'hypothèse de dislocations continûment distribuées dans l'empilement facilite le calcul du dèplacement par glissement de l'extrémité de la fissure le long du plan de glissement, à partir duquel on peut établir les conditions de fermeture en mode-I juste derrière l'extrémité de la fissure. Le facteur d'intensité de contraites de seuil peut dès lors être exprimé en fonction de la contrainte critique de cisaillement, de la limite élastique macroscopique moyenne, de l'angle entre le plan de glissement et le plan de la fissure, et de la longueur de la bande de glissement. Un bon accord est trouvé entre les tendances prévues et les données expérimentales, dans le cas de divers alliages.
  相似文献   

10.
Energy partitioning for a crack under remote shear and compression   总被引:4,自引:0,他引:4  
The true nature and characteristics of crack growth mechanisms in geologic materials have not been adequately described and are poorly understood. The process by which deformation energy is converted to slipping and growing cracks under compressive stresses is complex and difficult to measure. A hybrid technique employing moiré interferometry as an experimental boundary condition to a finite element method (FEM) was employed for through-cracked polycarbonate plates under remote shear and compression. Cohesive end zone and dislocation slip models are used to approximate experimentally observed displacement characteristics. Shear-driven linear elastic fracture mechanics displacement predictions are shown to be inadequate for initial displacement progression. Moiré displacement fields of relative crack face slip reveal a near tip cohesive zone. The pre-slip moiré-FEM stress fields reveal that the maximum crack tip tensile stress occurs at approximately 45 degrees and further infers cohesive zone presence. A J integral formulation uses moiré displacement data and accounts for stored energy along the crack before and after shear driven crack face slip. These energy-partitioning results track the transfer of stored energy along the crack face to the crack tip until the entire crack is actively slipping. These laboratory-scale experiments capture basic mechanical behavior and simulate thousands of years of large-scale geologic feature displacement history in just a few hours.  相似文献   

11.
采用新型数字激光动态焦散线实验系统,对缺陷介质双孔定向断裂控制爆破裂纹扩展的动态行为进行了研究。结果表明,预制斜裂纹阻断了爆生主裂纹的扩展,最终两条主裂纹分别与翼裂纹形成相互勾连的形状。爆生主裂纹尖端以张拉应力场为主,其断裂为近似I型断裂。当爆生主裂纹运动到预制裂纹附近时,主裂纹端部应力场与预制裂纹尖端奇异应力场相互叠加,在预制裂纹尖端形成较强的拉剪应力场,且受已有主裂纹面的影响,预制裂纹扩展表现为弯向主裂纹面的弯曲断裂。研究结果可为含节理岩体定向断裂控制爆破提供理论依据。  相似文献   

12.
ABSTRACT This paper explores the effects of microstructural heterogeneity on the cyclic crack tip opening and sliding displacements for stationary, microstructurally small transgranular surface cracks in a single phase metallic polycrystal using planar double slip crystal plasticity computations. Crack tip displacements are examined under plane strain conditions for stationary cracks of different lengths relative to grain size as a function of the applied nominal strain amplitude for tension-compression and cyclic shear. Nominal strain amplitudes range from well below to slightly above the nominal cyclic yield strength for each type of loading condition. Results indicate the complex nature of the crack tip sliding and opening displacements as functions of nominal strain amplitude and orientation of the nearest neighbour grains, the influence of the free surface in promoting the cyclic opening displacement even for cracks in the first surface grain, the rather restricted limits of applicability of linear elastic fracture mechanics, and very interesting crack tip plasticity effects which include crack tip displacement ratcheting or progressive accumulation, even for completely reversed, proportional applied loading. Results are compared for cases with and without crack face friction.  相似文献   

13.
Fatigue crack growth is a complex process that involves interactions between many elements ranging across several length scales. This work provides an in-depth, experimental study of fatigue crack growth and the relationships between four of these elements: strain field, microstructure, crack path, and crack growth rate. Multiple data sets were acquired for fatigue crack growth in a nickel-based superalloy, Hastelloy X. Electron backscatter diffraction was used to acquire microstructural information, scanning electron microscopy was used to identify locations of slip bands and crack path, and optical microscopy was used to measure crack growth rates and to acquire images for multiscale digital image correlation (DIC). Plastic strain accumulation associated with fatigue crack growth was measured at the grain level using DIC. An ex situ technique provided sub-grain level resolution to measure strain variations within individual grains while an in situ technique over the same regions showed the evolution of strain with crack propagation. All of these data sets were spatially aligned to allow direct, full-field comparisons among the variables. This in-depth analysis of fatigue crack behavior elucidates several relationships among the four elements mentioned above. Near the crack tip, lobes of elevated strain propagated with the crack tip plastic zone. Behind the crack tip, in the plastic wake, significant inhomogeneities were observed and related to grain geometry and orientation. Grain structure was shown to affect the crack path and the crack growth rate locally, although the global crack growth rate was relatively constant as predicted by the Paris law for loading with a constant stress intensity factor. Some dependency of crack growth rate on local strain and crack path was also found. The experimental comparisons of grain structure, strain field, and crack growth behavior shown in this work provide insight into the fatigue crack growth process at the sub-grain and multi-grain scale.  相似文献   

14.
The effects of the stress ratio and the grain size on the fatigue crack growth near the threshold in a low carbon steel were analysed based on the crack-closure measurement and the microscopic observations of cracktip slip deformation and the fracture surface. The low-rate region A was divided into regions A1 and A2 in the relation of the rate against the effective stress intensity range. In regions A2 and B, the rate was expressed in a unique power function of the effective range without respect to the stress ratio and the grain size. In region A1 very close to the threshold, the rate was slower for larger grain sized material, and the effective threshold stress intensity factor increased linearly with the square root of the grain size. The slip-band zone in this region was rather independent of the stress intensity and was sized by the grain dimension. A model of the crack-tip slip bands blocked by the grain boundary was confirmed to be useful for analysing very slow growth as well as the threshold condition. The shear-mode fracture surface observed on the surface in region A1suggests the repeated nucleation mechanism for crack growth. The effects of the stress ratio and the grain size on the crack closure behavior near the threshold was quantified.  相似文献   

15.
An analytical method for mixed-mode (mode I and mode II) propagation of pressurized fractures in remotely compressed rocks is presented in this paper. Stress intensity factors for such fractured rocks subjected to two-dimensional stress system are formulated approximately. A sequential crack tip propagation algorithm is developed in conjunction with the maximum tensile stress criterion for crack extension. For updating stress intensity factors during crack tip propagation, a dynamic fictitious fracture plane is used. Based on the displacement correlation technique, which is usually used in boundary element/finite element analyses, for computing stress intensity factors in terms of nodal displacements, further simplification in the estimation of crack opening and sliding displacements is suggested. The proposed method is verified comparing results (stress intensity factors, propagation paths and crack opening and sliding displacements) with that obtained from a boundary element based program and available in literatures. Results are found in good agreements for all the verification examples, while the proposed method requires a trivial computing time.  相似文献   

16.
In this paper a dual boundary element formulation is developed and applied to the evaluation of stress intensity factors in, and propagation of, axisymmetric cracks. The displacement and stress boundary integral equations are reviewed and the asymptotic behaviour of their singular and hypersingular kernels is discussed. The modified crack closure integral method is employed to evaluate the stress intensity factors. The combination of the dual formulation with this method requires the adoption of an interpolating function for stresses after the crack tip. Different functions are tested under a conservative criterion for the evaluation of the stress intensity factors. A crack propagation procedure is implemented using the maximum principal stress direction rule. The robustness of the technique is assessed through several examples where results are compared either to analytical ones or to BEM and FEM formulations.  相似文献   

17.
Abstract

The stress induced martensitic transformation and the relationship between it and the nucleation and propagation of cracks in the Cu-Ni-Al shape memory alloy were investigated through in situ tensile tests by SEM and TEM. The results indicated that the stress concentration ahead of the crack tip could induce formation of stacking faults and different types of martensites. Transmission electron microscope observations showed that the martensites could transform from one type to another type and even reversely to parent during loading. The microcracks nucleated along the martensite/parent interface and intersections between two martensites. When the crack propagated a certain distance, the stress concentration ahead of the crack tip was large enough to result in formation of slip bands, in this condition the microcrack nucleated along slip bands more easily.  相似文献   

18.
The paper presents an analysis of the effects of grain orientations on a short, kinked surface crack in a 316L stainless steel. The kinking of the crack is assumed to take place at the boundary between two neighbouring grains. The analysis is based on a plane-strain finite element crystal plasticity model. The model consists of 212 randomly shaped, sized and oriented grains, loaded monotonically in uniaxial tension to a maximum load of 0.96Rp0.2 (240 MPa). The influence that a random grain structure imposes on a Stage I crack is assessed by calculating the crack tip opening (CTOD) displacements for bicrystal as well as for polycrystal models, considering different crystallographic orientations. Since a Stage I crack is assumed, the crack is always placed in a slip plane. Results from a bicrystal case show that the maximal CTODs are directly related to the stiffness of the grain containing the crack extension. Anisotropic elasticity and crystal plasticity both contribute to this grain stiffness, resulting in maximal CTOD when Schmid factors are the highest on two slip planes. Such crystallographic orientation results in a soft elasto-plastic response. Anisotropic elasticity can additionally increase the softness of a grain at certain crystallographic orientations. Minimal anisotropic elasticity at the crystallographic orientations with the highest Schmid factors causes the CTOD to be maximized. Presuming that the crack will preferably follow the slip plane where the crack tip opening displacement is highest, we show that the crystallographic orientation can affect the CTOD values by a factor of up to 7.7. For a given grain orientation the maximum CTOD is attained when the crack extension deflection into a second grain is between −75.141° and 34°. For the polycrystal case we show that grains beyond the first two crack-containing grains change the CTOD by a factor of up to 3.3 and that the largest CTODs are obtained when placing the crack into a slip plane with crack extension that results in a crack extension being more perpendicular to the external load.  相似文献   

19.
This paper presents a model based on dislocation theory for representation of crack tip plasticity in a pressure sensitive material. The basic equations are derived from a simple model of the crack tip plasticity which represents the plasticity by superdislocations placed at the effective centres of the complete slip process distributed around the crack tip. The positions and strengths of the superdislocations are determined by imposing the following conditions:(i) the total stress-intensity factor at the crack tip is zero(ii) the total stress minus the self stress of the superdislocation acting at the superdislocation position is just equal to the friction stress due to the Mohr-Coulomb yield criterion and(iii) the total crack opening displacement produced by the model is maximized.Condition (iii) enables the angle of the slip band on which the superdislocation lies to be determined. The results are presented in a dimensionless form allowing the discussion of particular cases and the recognition of the dominant parameters. A series of parametric studies are carried out to demonstrate that the model can capture the essentials of the crack tip plasticity.  相似文献   

20.
Abstract— A model for fatigue threshold has been proposed based on the dislocation subgrain cell structure that evolves at the crack tip in steels during the fatigue deformation process. The stabilized subgrain cells that develop in the material act as impenetrable barriers to dislocations in slip band pile-ups that emanate from the fatigue crack tip. The blocking of these dislocations tends to limit crack growth that occurs by crack tip emission of dislocations, thereby leading ultimately to the fatigue threshold condition. The grain size effect on threshold is deduced to be an indirect effect as it is proposed that the subgrain cell size is the controlling substructural parameter at the threshold stress intensity level. The subgrain cell size is shown to be proportional to the one-third power of the initial grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号