首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous gelcasting of dense or cellular ceramics by using biopolymers as gel-formers, instead of monomers, is a promising technology mainly in terms of environmental aspects. The main difficulty of using biopolymer solutions in processing of cellular ceramics by foaming method is their high viscosity, which prevents the foaming capacity of the ceramic suspension. In this work, the procedure for preparing concentrated agarose solutions (4 wt.%) by dissolving under overpressure conditions was evaluated for the gelcasting of alumina foams, and the rheological behaviour of alumina suspensions containing agarose was studied. The viscosity of the gelling solution obtained under overpressure conditions was lower than that prepared by simply heating at 90 °C, thus providing high foaming capacity of the alumina suspensions and consequently manufacturing of highly porous ceramics (86–90%). The microstructure of alumina foams was typically composed of approximately spherical cells interconnected by circular windows. The use of different agarose concentrations in alumina suspensions effected the rheological conditions, which resulted in changes in the pore and window sizes of the resulting ceramics. Depending on agarose concentration (0.50–1.0 wt.% on a dry solids basis) in the starting (35 vol.%) alumina slurry, the mean pore size ranged from 529 to 375 μm, while the mean window size varied from 113 to 77 μm.  相似文献   

2.
This study investigates the dispersions of 1 wt.% C.I. pigment violet 23 particles in propylene glycol monomethyl ether acetate (PGMEA) using a supercritical fluid-assisted dispersion process (SFAD). The favorable formulation of dispersants is a blend of 40% AJISPER PB821 and 10% FC-4430 in a PGMEA medium. The SFAD processes holding at the supercritical state are good for improving dispersion. Under favorable conditions, 328.2 K and 20 MPa, the mean size of pigment dispersoid with blended dispersants in PGMEA is as small as 175 nm that meets the required range of 100-200 nm in industrial applications. The TGA analyses indicate the adsorbed amount of blended dispersants (40% PB821 and 10% 4430) on the surface of pigment particles in the PGMEA medium is about 1.77 mg/m2. Thus, the transmittances, color analyses, and TEM images of pigment dispersoids prove that the SFAD process can disperse pigment particles in PGMEA.  相似文献   

3.
The alumina nanopowder was synthesized via the sol–gel method. θ-Alumina with crystallite size in the range of 25–110 nm was crystallized by calcination of the powder at 900 °C for 1 h. Sodium alginate, a natural innoxious polymer, was applied for in situ forming process of an Al2O3 green body, using calcium phosphate as a solidifier agent. Sodium hexa metaphosphate was also utilized as a chelator. Rheological and gelation behaviors of resultant slurry were analyzed. The viscosity of slurries with 15 vol.% alumina and 1.8 vol.% calcium phosphate dispersed by 1 wt.% sodium alginate solution, was less than 800 mPa s. The green bodies from the gelcasting process were dried at room temperature for 36 h and pressureless sintered at 1500 °C for 3 h. A uniform microstructure without huge grain growth was revealed by SEM.  相似文献   

4.
本文主要探讨在高铝泥浆制备过程中,选用不同解凝剂(JA-281,阿拉伯树胶、水玻璃、碳酸钠)的原则,通过对泥浆粘度、稠化系数、吸浆速度等参数的测定,来探索单一添加和复合添加JA-281对高铝泥浆流变性能的影响及其解凝机理。  相似文献   

5.
In this research hyperbranched resins containing fatty acid residues were synthesized. Dipentaerythritol which has six hydroxyl groups was used as the core molecule, and it was transesterified with (i) castor oil, and (ii) a mixture of castor oil and linseed oil at 240 °C. The resulting molecule had hydroxyl containing ricinoleic acid residue coming from castor oil. It was then esterified with dimethylol propionic acid at 140 °C in the presence of para-toluene sulfonic acid used as catalyst. The hyperbranched resin thus produced was then mixed with melamine-formaldehyde resin to improve its properties. The resins were characterized by FTIR spectroscopy, and the thermal properties were determined by DSC. The resins were thermally stable up to 316 °C. The viscosity of the resin that was synthesized by using only castor oil was 3.0 Pa s, while the one synthesized by using 50% linseed oil had a viscosity of 1.0 Pa s. When reacted with dimethylol propionic acid the viscosity of the former resin increased to 7.0 Pa s, and that of the second to 3.7 Pa s. The hyperbranched resins showed excellent adhesion, gloss, flexibility, and formability. The mixed resin (i.e. hyperbranched and melamine-formaldehyde) had higher hardness values but lower gloss, adhesion, and bending resistance. Both types of resins also had good impact and abrasion resistances.  相似文献   

6.
The process for alumina gel casting was developed using an inorganic binder The monohydroxy aluminium oxide (boehmite, AlOOH) was incorporated with ultrafine alumina of particles (0·5 μm) and the slurry rheology was studied and presented. The effect of boehmite in slurry viscosity was observed with respect to different amounts of boehmite and time. The alumina 54 vol% slurry with 10 wt% boehmite showed the viscosity of 880 mPa s at 93 s−1. An external coagulating agent, HMTA, was incorporated with alumina–boehmite slurry and the effective change in slurry viscosity with respect to concentration and time was studied. The addition of HMTA results in faster gelation and the optimum concentration was determined as 0·21 mol L−1. The alumina gelcast body was dried under humidity conditions at 40°C, RH 70%. The defect free dried green body was obtained and the total linear drying shrinkage was calculated as 3·2% and the green density observed was 59·3% of theoretical value. The sintered density of 98% (TD) was achieved at 1450°C in 2 h. The mechanical hardness of sintered alumina measured as 2286 kg mm−2. The sintered ceramic showed an extremely fine grained microstructure with an average grain size <2 μm. The boehmite acts as an excellent binder and sintering aid for alumina ceramics.  相似文献   

7.
Dispersion behavior of TiO2 in different solvent systems in combination with two different dispersants was studied and optimized for the dispersion of TiO2. Based on sedimentation, viscosity, and rheological characteristics, zeotropic ethanol: xylene with a ratio of 50:50 along with 1 wt% menhaden fish oil is found to be the best solvent–dispersant combination for TiO2. Tape casting slurry was optimized using polyethylene glycol 400 and benzyl butyl phthalate as plasticizers and polyvinyl buyral as the binder. Cyclohexanone was used as homogenizer. TiO2 tapes were obtained by double doctor blade tape casting process. As cast tapes were dried in air at room temperature. The results show that it is possible to obtain homogenous defect-free green tapes of 58.7% solid loading and green density of 55% having thickness of ∼90 μm.  相似文献   

8.
The fabrication of composites formed by alumina grains (95 vol%) in the micrometer size range and aluminium titanate nanoparticles (5 vol%) by reaction sintering of alumina (Al2O3) and titania (TiO2) is investigated. The green bodies were constituted by mixtures of sub-micrometric alumina and nano-titania obtained from freeze-drying homogeneous water based suspensions, and pressing the powders. The optimization of the colloidal processing variables was performed using the viscosity of the suspensions as control parameter. Different one step and two step sintering schedules using as maximum dwell temperatures 1300 and 1400 °C were established from dynamic sintering experiments. Specimens cooled at 5 °C/min as well as quenched specimens were prepared and characterized in terms of crystalline phases, by X-ray diffraction, and microstructure by scanning electron microscopy of fracture surfaces.Even though homogeneous final materials were obtained in all cases, full reaction was obtained only in materials treated at 1400 °C. The microstructure of the composites obtained by quenching was formed by an alumina matrix with bimodal grain size distribution and submicrometric aluminium titanate grains located inside the largest alumina grains and at triple points. However a cooling rate of 5 °C/min led to significant decomposition of aluminium titanate. This fact is attributed to the small size of the particles and the effect of the alumina surrounding matrix.  相似文献   

9.
Tape Casting of Fine Alumina/Zirconia Powders for Composite Fabrication   总被引:3,自引:0,他引:3  
Ceramic films, containing AI2O3, with up to 40 vol% ZrO2, have been fabricated using the tape casting process. Finer powders (average mean diameter of 250–300 nm) than have generally been reported for tape casting were used in this study. The optimum formulation for tape casting is affected substantially by decreasing particle size. For example, the amount of dispersant needed is increased. Moreover, the amount of plasticizer/binder must be increased so as to maintain the solids content in the dried tapes below a critical level (about 55 vol% in this case), which decreases with particle size. Rheological studies on the effectiveness of menhaden fish oil and phosphate ester as dispersants show that phosphate ester can be used in lower concentrations, for the preparation of higher solids loading slurries, and was therefore selected for further study. The amount of dispersant required to obtain minimum slurry viscosity was found to be primarily dependent upon the effective particle surface area, defined as that available to the dispersant molecules. In the case of particles composed of agglomerated crystallites (such as the ZrO2, powder used here), this may be considerably less than that measured by nitrogen absorption. Moreover, the porous internal structure of such powders is filled with solvent, which increases the effective solids loading of the slurry, and thus its viscosity. Particle morphology also influences the packing efficiency; i.e., the green density decreases as ZrO2, is added.  相似文献   

10.
Stereolithography of UV-curable ceramic suspensions can benefit from the preparation of stable, low viscosity and high solid loading ceramic suspensions without yield stress. Appropriately adding dispersants could optimize the rheological behavior to meet the requirements of stereolithography. In this work, short-chain dicarboxylic acids were utilized to modify the alumina particles and achieve well dispersed ceramic suspensions. The maximum adsorption capacities of dicarboxylic acids were determined by the method of High Performance Liquid Chromatography and the mechanism of surface modification and dispersion was also discussed. Dicarboxylic acids’ influence on the rheology behavior was systematically studied. When doses of dicarboxylic acids reach their maximum adsorption capacities, the alumina suspensions would achieve their lowest viscosities and yield stresses. 45 vol% alumina suspension with a viscosity ˂2 Pa s at shear rate 30 s−1 was successfully formulated. A sintering density of 96.5% can be achieved for the sebacic acid-modified alumina UV-curable suspension.  相似文献   

11.
Direct coagulation casting (DCC) of concentrated aqueous alumina slurries prepared using ammonium poly(acrylate) dispersant has been studied using MgO as coagulating agent. Addition of small amounts of MgO increased the viscosity of the concentrated alumina slurries with time and finally transformed it in to a stiff gel. Sufficient working time for degassing and casting could be achieved by cooling the slurries to a temperature of ∼5 °C after proper homogenization after the addition of MgO. The DCC slip with alumina loading in the range of 50–55 vol% showed relatively low viscosity (0.12–0.36 Pa s at shear rate of 93 s−1) and yield stress (1.96–10.56 Pa) values. The wet coagulated bodies prepared from slurries of alumina loading in the range of 50–55 vol% had enough compressive strength (45–211 kPa) for handling during mould removal and further drying. The coagulated bodies prepared from slurries of alumina loading in the range of 50–55 vol% showed linear shrinkage in the range of 4.8–2.3 during drying and 17.1–16.2 during sintering respectively. Near-net-shape alumina components with density >98% TD could be prepared by the DCC process.  相似文献   

12.
讨论了有机添加剂对氧化铝造粒粉性能的影响,实验结果表明:S分散剂对氧化铝陶瓷料浆的稳定分散作用最好,适宜的添加量为0.3%-0.5%;PVA添加量为1.2%-1.5%时,料浆的粘度适中,适合喷雾造粒;消泡剂BYK-603的适宜添加量为0.2%-0.4%。另外,PH值对料浆的稳定性也起到非常重要的作用,料浆偏弱酸性时稳定...  相似文献   

13.
以松香为原料,与顺丁烯二酸酐加成,再经二乙醇胺改性得到一种多元环状结构的马来海松酸醇酰胺水煤浆分散剂。分散剂含有多个醇酰胺链段,能使水很快润湿煤表面。结合水煤浆在不同浓度、pH、转速等条件下的流变行为和Zeta电位,讨论了分散剂对陕西神华煤成浆性的影响,初步探讨了该分散剂与煤粒的作用机理。研究认为分散剂加入后,以疏水基团与煤表面相连,亲水基团与水相连,并通过亲水链段的空间位阻效应,有效阻隔了煤粒间的聚集,使煤粒得到均匀分散,达到了降低水煤浆粘度,提高稳定性的作用。  相似文献   

14.
The Jatropha curcas Linnaeus (JCL) oil was extracted, refined and modified through epoxidation, hydroxylation and dehydration steps in order to increase the degree of unsaturation in the oil alkyl chain. The modified oil was subsequently used for alkyd resin preparation (50% oil formulation) using a two-stage alcoholysis-polyesterification method. Drying performances of white gloss paints formulated from the desaturated oil alkyd, considering a pigment-volume concentration of 20.67% gave improved results. Blending of the improved 50% JCL oil alkyd with acrylic further enhanced the drying properties and compare well with commercial standards. White gloss paint formulated from the improved JCL alkyd–acrylic blends (1:3) dried hard within 2 h at an outdoor temperature of 37 °C ± 2.  相似文献   

15.
The effect of cationic and anionic dispersants on aqueous suspensions of as-received and surface-modified silicon carbide particles has been studied via observation of the rheological behaviour. Only the cationic dispersants were effective for the as-received SiC, with polyethyleneimine being superior to Hyamine 2389 probably as a result of a greater electrosteric interaction. SiC particles modified using Al(NO3)3 behaved like alumina and so could be dispersed using the anionic dispersants ammonium polyacrylate and polymethacrylate. Such dispersions displayed no heteroaggregation when alumina was added, although the order of mixing could significantly affect the rheological behaviour of the suspension. Nevertheless, the suspensions appeared robust to slight fluctuations in pH.  相似文献   

16.
The stability of water-based pigment dispersions is a key factor in determining their utility in ink-jet applications, and the appropriate choice of dispersant plays a special role. Among the pigment formulations tested to date, literature data on magenta pigments are very limited. Thus, the goal of this work was to study the influence of the type and loading of dispersants on the quality and stability of quinacridone magenta pigment dispersions. Three different commercially available dispersants were tested: (1) a cationic styrene-maleic anhydride copolymer, (2) an anionic polyacrylate, and (3) a nonionic alkyl ethoxylate. Pigment and dispersing agents were analysed using the Fourier Transform–infrared method. The stability of pigment dispersions was determined by comparative studies of changes in the pigment particle size, viscosity, pH, filtration time, optical density and gloss during the accelerated ageing test. Moreover, Turbiscan AGS and LUMiFuge analysers were used for evaluations of the instability of the dispersions. The properties of each dispersing agent affected the performances of the different dispersants. The highest stability for the pigment formulations was provided using the nonionic dispersant (small particle size, < 60 nm; the lowest viscosity < 60 mPa·s at the optimal dispersant content; favourable results of the filtration test; the highest pigment dispersability, proven by optical density and gloss). The Turbiscan AGS and LUMiFuge results indicated that the stability of all tested quinacridone magenta pigment dispersions was excellent (Turbiscan Stability Index values below three, and no significant differences in transmission profiles, respectively). However, it was found that the measurement results were influenced by the viscosity of the formulations.  相似文献   

17.
The present study demonstrates a novel hydrodynamic lift force sieving attained in an arc microchannel with a bifurcation at the downstream end. The fluorescent polystyrene particles with diameter of 10 or 20 μm are dispersed in water or NaCl aqueous solutions so that the particles are completely neutrally buoyant, lighter or denser relative to medium. The slurry is fed into the arc microchannel whose radius, width and depth are 20 mm, 200 and 150 μm, respectively. The fluorescent trajectories of flowing particles are recorded at the bifurcation. It is found that the 20-μm particle is sharply focused to an equilibrium position somewhat distant from the outer wall regardless of the given density difference. As a result, all 20-μm particles report to the outer branch of bifurcation. On the other hand, the 10-μm particles dispersed mostly across the channel width are always recovered from the both branches. The results imply that the arc microchannel with a bifurcation will intensify the process of particle separation since the particles completely neutrally buoyant as well as denser and lighter particles can be simultaneously separated or classified without membrane. Finally, a separation process in a series of arc channels is proposed and the process efficiencies are discussed.  相似文献   

18.
选用硬脂酸钠对ZnO进行表面湿法改性,以环十五硅氧烷硅油为溶剂,PEG-10聚二甲基硅氧烷为分散剂,通过机械球磨法制备了纳米ZnO分散浆。利用水接触角、热重、TEM和FTIR对纳米ZnO粉体进行表征。结果表明,硬脂酸钠改性后,粉体具有疏水性,且硬脂酸钠最佳包覆量为6%(以ZnO的质量计,下同)。硬脂酸钠包覆量为6%的疏水性纳米ZnO粉体,包覆层厚度约为2 nm,此时水接触角最大为145.4°。模拟防晒乳液的防晒性能测试中,纳米氧化锌分散浆的紫外屏蔽性能显著优于粉体。流变特性测试表明,分散浆为假塑性流体,流动曲线符合Ostwald-de Wale幂律方程,具有剪切稀化特性;分散浆的黏度低,触变性小,储存稳定性高;温度升高,黏度降低,配方生产中对温度的敏感程度较小 。  相似文献   

19.
The change in viscosity of cement slurry with temperature and pressure can be predicted by assuming that hydration can be treated as an activated process and that a given viscosity corresponds to a fixed degree of reaction. For Class H and White cements, chemical shrinkage experiments indicate that the activation energy is 33.8 kJ/mole and rheological measurements yield an activation volume of −30 cm3/mole. With these parameters, it is possible to predict the limit of pumpability of the slurry (which corresponds to a viscosity of about 2.5 Pa s) for arbitrary temperature and pressure cycles. This method of prediction requires that the physics of the process remain the same, but simply change in rate; therefore, the range of applicability is expected to be limited to temperatures below about 100 °C, since new phases occur at higher temperatures.  相似文献   

20.
Al2O3-5 vol.% Y3Al5O12 (YAG) composite powders have been prepared by surface doping of α-alumina powders by an yttrium chloride aqueous solution. Two commercial, one submicron-sized, the other ultra-fine, alumina powders were compared as matrix materials. YAG phase was yielded by an in situ reaction promoted by the subsequent thermal treatment of the doped powders. In particular, a flash soaking into a tubular furnace kept at a fixed temperature in the range 1050-1150 °C was employed, for inducing the crystallization of yttrium-aluminates on the alumina particles surface, but avoiding a relevant crystallites growth. After that, aqueous suspensions of the calcined powders were dispersed by ball-milling and cast into porous moulds or simply dried in a oven. Slip cast green bodies were densified by pressure-less sintering, while powdered samples were consolidated by hot pressing or spark plasma sintering. The low- and high-temperature mechanical performances of the sintered materials were investigated and related to monolithic aluminas behaviour as well as to the composites microstructures. It is shown that the hot-pressed and spark plasma sintered composites present a significantly lower creep rate as compared to reference, monolithic alumina samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号