首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In situ scanning tunneling microscopy (STM) and reflection high energy electron diffraction (RHEED) were used to characterize mercury film electrodeposited onto a Pt(1 1 1) electrode at room temperature. Depending on the amount of Hg deposit, two different growth modes were observed. At low Hg coverage, crystalline (0 0 0 1)Hg adlayer accompanied by 30°-rotated (1 1 1)-Pt patches was found on Pt(1 1 1). Deposition of multilayer Hg resulted in layered PtHg2 and PtHg4 amalgams, which grew epitaxially by aligning their (2 0 1) and planes, respectively, parallel to the Pt(1 1 1) substrate. The preference of these epitaxial relationships for the electrochemically formed Pt-Hg intermetallic compounds on Pt(1 1 1) could result from minimization of the surface energy.  相似文献   

2.
Platinum is deposited spontaneously on Au(1 1 1) surface from 1 mM H2PtCl6 + 1 M HClO4 solution using multiple deposition procedure. X-ray photoelectron spectroscopy (XPS) analysis has shown that after immersion into the Pt containing solution and rinsing with water, Pt(OH)2 resides on the Au(1 1 1) substrate. Consecutive depositions as well as in situ scanning tunneling microscopy (STM) and electrochemical measurements are performed on previously electrochemically reduced Pt/Au(1 1 1) surfaces. Only homogeneous distribution of thus deposited Pt islands is observed by in situ STM. With subsequent depositions, the width of deposited Pt islands increases, but stays lower than 10 nm, while a significant increase of Pt islands height is observed, leading to moderate increase of the coverage. Cyclic voltammetry (CV) profiles of obtained Pt/Au(1 1 1) surfaces, and CO stripping curves are recorded in 0.5 M H2SO4 solution. CO oxidation takes place only at higher potentials shifting negatively with increasing coverage. This is discussed with respect to Pt islands width and height distributions and to the influence of the Au(1 1 1) substrate surface.  相似文献   

3.
Ni + Mo + Si coatings were obtained by nickel deposition from a bath containing suspension of molybdenum and silicon powders. These coatings were obtained in galvanostatic conditions, at the current density of jdep = −0.100 A cm−2. For determination of the influence of phase composition and surface morphology of obtained coatings on changes of corrosion resistance, these coatings were modified in argon atmosphere by thermal treatment at the temperature of 1100 °C during 1 h. A scanning electron microscope was used for surface morphology characterization of the coatings. Chemical composition of obtained coatings was determined by X-ray fluorescence spectroscopy method. Phase composition investigations were conducted by X-ray diffraction method. It was found that the obtained coatings are composed of three phase structures, i.e., nickel, molybdenum and silicon. Phase composition for the Ni + Mo + Si coatings after thermal treatment is markedly different. The main peaks corresponding to the Ni and Mo coexist with the new ones corresponding to new phases: Mo5Si3, NiSi, Mo2Ni3Si and Ni6Mo6C1.06.Electrochemical corrosion resistance investigations were carried out in the 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy methods. On the basis of these investigations it was found that Ni + Mo + Si coatings after thermal treatment are more resistant in alkaline solution than Ni + Mo + Si as-deposited coatings. The reason of this is presence of silicides in the coatings.  相似文献   

4.
Electrochemical deposition of Ag and potential-induced structural change of the deposited Ag layer on a reconstructed surface of Au(1 1 1) electrode were followed by in situ scanning tunneling microscope (STM). A uniform Ag monolayer was formed on a reconstructed Au(1 1 1) surface in a 50-mM H2SO4 solution at +0.3 V (vs. Ag/AgCl) after adding a solution containing Ag2SO4 so that the concentration of Ag+ in the STM cell became ca. 2 μM. No characteristic height corrugation such as the Au reconstruction was observed on the surface, indicating that the lifting of the substrate Au reconstruction occurred by Ag deposition. The formed Ag monolayer was converted to a net-like shaped Ag nano-pattern of biatomic height when the potential was stepped from +0.3 to −0.2 V in the solution containing 2 μM Ag+. This result indicates that the substrate Au(1 1 1)-(1 × 1) surface was converted to the reconstructed surface even in the presence of Ag adlayer. Quite different structure was observed for Pd deposition on a reconstructed surface of Au(1 1 1) electrode at +0.3 V and the origin for this difference between Ag and Pd deposition is discussed.  相似文献   

5.
Surface structure of Pt(3 1 0) = 3(1 0 0)-(1 1 0), which contains kink atoms in the step, has been determined with the use of in situ surface X-ray scattering (SXS) in the double layer region (0.50 V(RHE)) in 0.1 M HClO4. Clean Pt(3 1 0) surface has pseudo (1 × 1) structure on which lateral displacements of 2-9% and 0.3-1% are found along a and b directions, respectively, whereas the surfaces of Pt(1 1 0) = 2(1 1 1)-(1 1 1) and Pt(3 1 1) = 2(1 0 0)-(1 1 1) are reconstructed to (1 × 2) according to previous reports. Interlayer spacing between the first and the second layers d12 is contracted about 5% compared with the bulk spacing, whereas those between underlying layers are expanded down to fourth layer. Fully adsorbed CO has no effect on the surface structure of Pt(3 1 0). This result differs from that on Pt(1 1 1), where d12 is expanded after CO adsorption.  相似文献   

6.
In situ electrochemical-scanning tunneling microcopy (EC-STM) was employed to investigate the etching dynamics of the moderately doped n-Si(1 1 1) electrode during cyclic voltammetric perturbation and at the seven different potentials including the open circuit potential (OCP) in 40% NH4F solution at pH 10, which was prepared from 40% NH4F and concentrated NH4OH solution. The etching rate was significant at OCP and showed an exponential dependence on the potential applied to the silicon substrate electrode. Although some triangular pits were generated at the Si(1 1 1) surface, at the potentials more negative than OCP the site dependence in the removal of surface silicon atoms prevailed and led to the atomically flat Si(1 1 1):H surfaces with sharply defined steps of the step height 3.1 Å, where the interatomic distance of 3.8 Å was observed with a three-fold symmetry. At the potentials sufficiently more positive than OCP, macroporous hole was formed to limit further in situ EC-STM study. The results were compared with in situ EC-STM studies of the etching reaction of n-Si(1 1 1):H in the aqueous solution of dilute ammonium fluoride at pH 5, 40% NH4F at pH 8, and 1 M NaOH reported in the literature.  相似文献   

7.
The oxidation of formaldehyde and ethanol on both pure Au(1 1 1) and Au(1 1 1) modified by approximately 0.3 monolayer (ML) of spontaneously deposited Ru was studied by cyclic voltammetry (CV) in 0.5 M H2SO4 solution containing either 0.25 M formaldehyde or 0.35 M ethanol. In situ scanning tunneling microscopy (STM) and CV were employed to characterize the Au(1 1 1) and Ru/Au(1 1 1) surfaces. The oxidation of HCHO on Ru/Au(1 1 1) commences at 0.1 V more negative potential than on pure Au(1 1 1). From 0.25 to 0.55 V vs. (Ag/AgCl), the reaction occurs with increasing current, showing a peak at a potential of 0.43 V. It is assumed that the increasing anodic activity of the Ru/Au(1 1 1) surface is associated with the oxidation of some reaction intermediates, facilitated by the presence of Ru in its metallic state. On the other hand, the oxidation of ethanol on Ru/Au(1 1 1) commences at 0.1 V more positive potential than on pure Au(1 1 1), and proceeds in the potential region from 0.2 to 0.5 V with significantly smaller currents, showing a peak at 0.43 V. This inhibiting effect is explained by the deactivation of the most active Au(1 1 1) step sites by high coverage with Ru islands. The appearance of a small peak at 0.43 V is most likely associated to the oxidation of some intermediates during ethanol oxidation at the Ru/Au step sites formed on the Au(1 1 1) terraces by the presence of a small coverage with Ru islands.  相似文献   

8.
The kinetics of electrocatalytic reduction of nitrate on Pt(1 1 0) in perchloric acid was studied with cyclic voltammetry at a very low sweep rate of 1 mV s−1, where pseudo-steady state condition was assumed to be achieved at each electrode potential. Stationary current-potential curves in perchloric acid in the absence of nitrate showed two peaks at 0.13 V and 0.23 V (RHE) in the so-called adsorbed hydrogen region. The nitrate reduction proceeded in the potential region of the latter peak in the pH range studied. The reaction orders with respect to NO3 and H+ were observed to be close to 0 and 1, respectively. The former value means that the adsorbed NO3 at a saturated coverage is one of the reactants in the rate-determining step (rds). The latter value means that hydrogen species is also a reactant above or on the rds. The Tafel slope of nitrate reduction was −66 mV per decade, which is taken to be approximately −59 mV per decade, indicating that the rds is a pure chemical reaction following electron transfer. We discuss two possible reaction schemes including bimolecular and monomolecular reactions in the rds to explain the kinetics and suggest that the reactants in the rds are adsorbed hydrogen and adsorbed NO3 with the assistance of the results in our recent report for nitrate reduction on Pt(S)[n(1 1 1) × (1 1 1)] electrodes: the nitrate reduction mechanism can be classified within the framework of the Langmuir-Hinshelwood mechanism.  相似文献   

9.
The rotating ring disk method (RRDE) is applied to investigate the pH effect on oxygen reduction reaction (ORR) on Ag(1 1 1) single crystal surface in 0.1 M KOH and 0.1 M HClO4. In 0.1 M KOH, the ORR proceeds through 4e reaction pathway with a very small (0.5-2.5%) peroxide formation in the entire potential range. In 0.1 M HClO4 the onset potential for the ORR is shifted for ca. 400 mV toward the higher overpotentials compared to the 0.1 M KOH solution. At the low overpotentials, in 0.1 M HClO4 the ORR proceeds entirely as a 2e process, i.e, 100% H2O2 formation. At higher overpotentials, the initial mixed a 2e and 4e reduction is followed by the potential region where the ORR proceeds entirely as a 4e process, with H2O formation as a final product. The pH dependent shift in the onset of the ORR as well as the reaction pathway has been explained based on both: a thermodynamic analysis of pH independent rate determining step, and on the pH dependent change in availability of surface active sites and adsorption energies of molecular oxygen and reaction intermediates.  相似文献   

10.
Adsorption of adenine on Au(1 1 1) and Au(1 0 0) electrodes is studied by cyclic voltammetry, impedance and chronoamperometric measurements in 0.1 M and 0.01 M KClO4 and in 0.5 M NaF solutions. The experiments performed with flame-annealed electrodes at different contact potentials, scan potential limits and scan rates, suggest different adsorption behaviour on the unreconstructed and reconstructed surface domains. This is confirmed by comparing the results obtained with electrochemically annealed unreconstructed and with flame-annealed reconstructed surfaces. In both cases the initial electrode surface state is characterised by the Epzc values. The adsorption on reconstructed surfaces takes place at more positive potentials than on the unreconstructed surfaces and induces the lifting of the reconstruction.The thermodynamic analysis is performed on the chronoamperometric data for adenine desorption on well characterised unreconstructed Au(1 1 1) surfaces. To this end a new methodology of the chronoamperometric experiments is introduced. Quantitative thermodynamic adsorption parameters such as surface tension, Gibbs surface excess, Gibbs energy of adsorption, potential versus Gibbs excess slope and electrosorption valency are determined. Weak chemisorption of adenine is inferred with a molecular orientation independent on the coverage and on the electrode potential. It is proposed that adsorbed adenine molecules adopt a tilted orientation at the surface to facilitate the coordination to the gold atoms.  相似文献   

11.
Kinked Pt(7 5 1) surface was prepared and its electrochemical behaviors under different pretreatment conditions in acidic media were investigated systematically by using cyclic voltammetry. The results demonstrated that the upper limit of potential scanning and cooling atmospheres after the Pt(7 5 1) having been flame-annealed significantly influence the voltammetric behavior of Pt(7 5 1) electrode. The electric charge of hydrogen adsorption-desorption slightly increases with increasing the upper limit of potential scanning. Different cooling atmospheres give rise impacts to the surface structure of Pt(7 5 1) electrode, but hardly change the amount of hydrogen adsorption-desorption sites on the electrode. In addition, the so-called third oxidation peak appears near −0.08 V in H2SO4 media and −0.05 V in HClO4 solution because of the presence of (1 1 0) terrace sites on this surface, and a plausible mechanism for the formation of this current peak is discussed. The results are of importance in understanding the electroadsorption properties of the kinked Pt(7 5 1) surface, as well as in further exploration of this kinked electrode in electrocatalysis.  相似文献   

12.
Kinetics and mechanism of nitrate ion reduction on Pt(1 1 1) and Cu-modified Pt(1 1 1) electrodes have been studied by means of cyclic voltammetry, potentiostatic current transient technique and in situ FTIRS in solutions of perchloric and sulphuric acids to elucidate the role of the background anion. Modification of platinum surface with copper adatoms or small amount of 3D-Cu crystallites was performed using potential cycling between 0.05 and 0.3 V in solutions with low concentration of copper ions, this allowed us to vary coverage θCu smoothly. Following desorption of copper during the potential sweep from 0.3 to 1.0 V allowed us to estimate actual coverage of Pt surface with Cu adatoms. Another manner of the modification was also applied: copper was electrochemically deposited at several constant potentials in solutions containing 10−5 or 10−4 M Cu2+ and 5 mM NaNO3 with registration of current transients of copper deposition and nitrate reduction.It has been found that nitrate reduction at the Pt(1 1 1) surface modified by copper adatoms in sulphuric acid solutions is hindered as compared to pure platinum due to induced sulphate adsorption at E < 0.3 V. Sulphate blocks the adsorption sites on the platinum surface and/or islands of epitaxial Cu(1 × 1) monolayer thus hindering the adsorption of nitrate anions and their reduction. The extent of inhibition weakly depends on the copper adatom coverage. Deposition of a small amount of bulk copper does not affect noticeably the rate of nitrate reduction.Nitrate reduction on copper-modified Pt(1 1 1) electrodes in perchloric acid solutions occurs much faster as compared to pure platinum. The steady-state currents are higher by 4 and 2 orders of magnitude at the potentials of 0.12 and 0.3 V, respectively. The catalytic effect of copper adatoms is largely caused by the facilitation of nitrate adsorption on the platinum surface near Cuad and/or on the islands of the Cu(1 × 1) monolayer (induced nitrate adsorption).Hydrogen adatoms block the adsorption sites on platinum for NO3 anion adsorption and inhibit reactions of nitrate reduction even at moderate surface coverage.The products of nitrate reduction in sulphuric and perchloric acids are essentially the same (NO and ammonia) irrespective of the presence or absence of Cu on the platinum surface.  相似文献   

13.
The adsorption of phosphate anions from phosphate solutions at poly-oriented and single-crystal platinum electrodes, primarily Pt(1 1 1), was studied over a wide range of pH by cyclic voltammetry. The features observed at the poly-oriented Pt electrode in phosphate solution may be related to the different crystalline facets, the (1 1 1) orientation presenting the most significant behavior in terms of phosphate adsorption. On the reversible hydrogen electrode (RHE) scale, the phosphate adsorption strength decreases with increasing alkalinity of the solution. Qualitatively, three different pH regions can be distinguished. At pH < 6 only a broad reversible peak is observed, corresponding to the adsorption of H2PO4 and further deprotonation to adsorbed HPO4. For 6 < pH < 11 a butterfly feature followed by one or two anodic peaks (depending on scan rate) is observed, ascribed to the adsorption of HPO4 followed by its subsequent deprotonation to adsorbed PO43−. The splitting into two or three voltammetric features, and the irreversibility of the two features at more positive potential, is ascribed to the deprotonation reaction leading to a surface species (i.e. phosphate) which needs to change its surface coordination. At pH > 11 a reversible pre-wave and a sharp spike are observed, ascribed to the co-adsorption of phosphate and hydroxide.  相似文献   

14.
The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag+ or Cd2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.  相似文献   

15.
Differential capacitance measurements of Pd overlayers on a Pt(1 1 1) electrode in dilute aqueous NaF solutions have been performed as a function of film thickness in order to determine the potential of zero free charge (pzfc). The pzfc of the first, pseudomorphic Pd monolayer on Pt(1 1 1) is −0.21 V versus SCE. By increasing the amount of deposited Pd, a clear shift of the pzfc to more positive values is observed. After deposition of an equivalent of 10 monolayers, the value approaches that of a massive Pd(1 1 1) electrode (−0.12 V versus SCE). The pzfc's for the various Pd coverages are correlated with surface structure information, derived from STM images (R. Hoyer, L.A. Kibler, D.M. Kolb, Electrochim. Acta 49 (2003) 63). Variations in the pzfc are discussed in the context of an electronic modification by the underlying substrate and are compared with corresponding data for Pd overlayers on Au(1 1 1).  相似文献   

16.
17.
The adsorption behaviour of 2-thiothymine and 4-thiothymine on a Au(1 1 1) single crystal electrode has been studied using cyclic voltammetry and X-ray photo electron spectroscopy. For both thio derivatives the adsorption region is restricted due to the onset of reversible oxidization to 2,2′-bis(1H-5-methylpyrimidin-4-one-2-yl)-disulphide or 4,4′-bis(1H-5-methylpyrimidin-2-one-4-yl)-disulphide at anodic potentials. Two different orientations of adsorbed 2-thiothymine have been observed. Between −350 mV and −700 mV versus Ag/Ag+ the molecule is solely chemisorbed via its sulphur atom and adopts an upright orientation towards the surface. However at more negative potentials 2-thiothymine is reoriented into a slightly tilted position interacting via its S, N and O atoms with the surface. In contrast, 4-thiothymine exhibits only one adsorption geometry. Between −300 mV and −700 mV versus Ag/Ag+ it is chemisorbed via sulphur and nitrogen adopting a slightly tilted position. At −950 mV versus Ag/Ag+ 4-thiothymine is irreversibly reduced. The sulphur substituent is eliminated and covers the substrate.  相似文献   

18.
L.A. Kibler 《Electrochimica acta》2008,53(23):6824-6828
The hydrogen evolution reaction has been studied for ultrathin Pd overlayers of various thickness on Au(1 1 1) in 0.1 M H2SO4. A clear correlation of the electrocatalytic activity as expressed by the exchange current density and the binding energy of adsorbed hydrogen has been found. While hydrogen is bound strongest on the second Pd monolayer (ML), the respective catalytic activity is poorest for all the surface structures under study. The exchange current density increases in the order 2 ML Pd < 1 ML Pd < bulk Pd (more than 2 ML). The electronic ligand effect, a geometric effect due to pseudomorphic growth and the surface defect density belong to the most crucial parameters in relations between structure of the electrode surface and its electrocatalytic activity. The experimental results are supported by an excellent agreement with theoretical predictions.  相似文献   

19.
We recently showed nickel-underpotential deposition (Ni-UPD) occurs on polycrystalline or single crystal platinum electrodes in acidic media. Whereas the decoupling of the nickel and hydrogen adsorption/desorption peaks is difficult for low pH, these processes can be better separated for higher pH values, typically pH > 3. However, even for platinum single crystals, high pH solutions do not enable to sufficiently separate nickel from hydrogen phenomena. As a result, electrochemistry alone cannot yield important information about Ni-UPD, such as the formal partial charge number (valency of electrosorption) and the role of the sulphate or hydrogen sulphate anions.So, we decided to couple cyclic voltammetry to electrochemical quartz crystal microbalance (EQCM). EQCM measurements enable to decorrelate the simultaneous hydrogen and nickel adsorption/desorption peaks, which we could not attempt solely with electrochemistry. The coupling between gravimetric and electrochemical measurements allows us to detect the contribution of the anions and thus to isolate that of nickel: nickel coverage can then be determined. Nearly 4/5 NiUPD monolayer (θNi ≈ 0.8) over platinum is reached at nickel equilibrium potential for high pH solutions (5.5). The QCM and electrochemistry coupling further allows the determination of nickel formal partial charge number: ιNi,EQCM = 1.3 ± 0.13. Direct electrochemistry measurements (Swathirajan and Bruckenstein method) yield: ιNi,Pt(poly) = 1.5 ± 0.17. These two values are close, which validates the electrochemical method for the nickel/platinum system. In consequence, we used Swathirajan and Bruckenstein method for Pt(1 1 0)-(1 × 2) crystal and found: ιNi,Pt(1 1 0) ≈ 1.4 ± 0.1. Whatever the system (NiUPD/Pt(poly) or NiUPD/Pt(1 1 0)-(1 × 2)) or the experimental technique, nickel formal partial charge number is lower than nickel cation charge: ιNi < zNi = 2. In consequence, upon underpotential deposition on platinum surfaces, nickel cations discharge and then undergo additional charge exchange processes, such as anion (or water) adsorption, resulting in apparent partial nickel cation discharge. Moreover, NiUPD/Pt(1 1 0) surface displays high activity towards COad oxidation reaction. We explain such positive effect by the possible existence of a bifunctional mechanism in which oxygenated-species-covered NiUPD adatoms provide the oxygen atom to COad?Pt species, enabling its facile oxidation.  相似文献   

20.
The adsorption/desorption kinetics of adenine on Au(1 1 1) electrodes is studied by Electrochemical Impedance Spectroscopy (EIS) in 0.5 M NaF solutions at four adenine concentrations. The experimental procedure is designed in order to obtain impedance data unaffected by surface reconstruction on the entire potential region of adsorption. The frequency dispersion of the impedance at potentials of the adsorption region has been analysed according to the Frumkin-Melik-Gaykazyan adsorption theory without any “a priori” assumption about the potential dependence of the adsorption rate constant. The analysis provides the values of the adsorption capacitance, Cad, adsorption resistance, Rad and the Warburg coefficient, σad, at every potential, and from them the relaxations times τH and τD. A mixed adsorption-diffusion control has been detected and the specific rate constant of adsorption has been obtained in a wide potential region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号