首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unidirectional carbon fiber reinforced fused silica (1D-Cf/SiO2) composite was prepared by slurry infiltration and hot-pressing. The flexural strength and the coefficient of thermal expansion (CTE) at room and liquid nitrogen temperature (77 K) were investigated. The flexural strength of the composite tested at 77 K was 878 MPa, higher than that 667 MPa at room temperature. Moreover, the CTE of the composite at 77 K was higher than that at room temperature. Due to the difference of CTE between the matrix and fiber, gaps appeared at the fiber/matrix interface of as-prepared specimens. However, they may be healed up because of the thermal expansion of carbon fiber at 77 K. It led to a higher interfacial sliding resistance and changed the weak fiber/matrix interfacial bonding. Thus, it was helpful for the load transfer from matrix to fiber.  相似文献   

2.
Silver nanoparticles (Ag NPs) with diameter of approximately 10 nm were prepared by the reduction of silver nitrate using green synthesis, an eco-friendly approach. The synthesized Ag NPs were homogeneously deposited on silicon dioxide (SiO2) particles modified with dopamine, leading to the formation of SiO2/polydopamine (PD)/Ag nanocomposites (NCs) with a core–shell–satellite structure investigated by transmission electron microscopy. The Ag content of SiO2/PD/Ag NCs determined by inductively coupled plasma optical emission spectrometry was approximately 5.92 wt%. The antibacterial properties of both Ag NPs and SiO2/PD/Ag NCs against Vibrio natriegens (V. natriegens) and Erythrobacter pelagi sp. nov. (E. pelagi) were investigated by bacterial growth curves and inhibition zone. Compared to Ag NPs, the SiO2/PD/Ag NCs exhibited superior long-term antibacterial activity, attributed to its controlled release of Ag+ ions.  相似文献   

3.
A novel layered microstructure in the Al2O3/ZrO2 composites system was fabricated by the multipass extrusion method. The microstructure consisted with very fine alternate lamina of Al2O3-(m-ZrO2) and t-ZrO2. The composites were designed in such a way that a small group of 7 cylindrical alternate layers of Al2O3-(m-ZrO2) and t-ZrO2 made a concentric microgroup around 40 μm in diameter, with a common boundary layer between the adjacent groups. The thickness of both layers was around 2-3 μm. The microstructure was unidirectionally aligned throughout the composites. The composite microstructure was fibrous due to the unidirectional orientation of these microgroups. Detailed microstructure of the fabricated composites was characterized by SEM. The effect of the concentric layered microstructure on mechanical behavior was discussed. Material properties such as density, bending strength, Vickers hardness and fracture toughness were measured and evaluated depending on different sintering temperatures.  相似文献   

4.
Mesoporous SiO2 ceramics are fabricated by pyrolysis of silicone resin filled with nanometer SiO2 powders in air at 1273 K. With the increase of shaping pressure, open porosity and average pore size decrease, while bulk density and fracture strength are improved. The fracture surface of porous SiO2 ceramics was observed.  相似文献   

5.
Dense Ti3AlC2/TiB2 composites were successfully fabricated from B4C/TiC/Ti/Al powders by spark plasma sintering (SPS). The microstructure, flexural strength and fracture toughness of the composites were investigated. The experimental results indicate that the Vickers hardness increased with the increase in TiB2 content. The maximum flexural strength (700 ± 10 MPa) and fracture toughness (7.0 ± 0.2 MPa m1/2) were achieved through addition of 10 vol.% TiB2, however, a slight decrease in the other mechanical properties was observed with TiB2 addition higher than 10 vol.%, which is believed to be due to TiB2 agglomeration.  相似文献   

6.
The microstructure of partially densified three-dimensional carbon fiber fabrics reinforced silicon carbide (Cf/SiC) composites are characterized by both mercury intrusion porosimetry (MIP) and isothermal nitrogen sorption (INS). By comparison, MIP is preferable to the characterization for its wide effective probing ranges. Based upon multiple measurements, in the Cf/SiC composite, exists a complicated three-dimensional porous network formed by the interconnecting pores and necks with various sizes, diverse shapes and rough surfaces.  相似文献   

7.
采用两步包埋法在Cf/SiC复合材料表面制备了Zr B_2-SiC/SiC超高温陶瓷涂层。借助SEM、XRD对涂层的微观结构及物相组成进行了分析研究,并进行了高温静态氧化和热震测试。研究表明,1500°C氧化5 h后,涂层表面覆盖有平整的玻璃相氧化层,氧化失重率为6.4%;热震测试10次后涂层的氧化失重率为14%。Zr B_2-SiC/SiC涂层能有效提高Cf/SiC复合材料的高温抗氧化性能。  相似文献   

8.
Cu metal matrix composite with Y2W3O12 as a thermal expansion compensator was fabricated by high energy ball milling followed by compaction and sintering, and its thermal properties were explored for the potential applications as heat sinks in electronic industries, high precision optics, and space structures. The volume fraction of reinforcement was varied from 40% to 70% in order to tailor the composite for the simultaneous accomplishment of low thermal expansion and high thermal conductivity. The synthesis technique was optimized by varying the parameters like milling time from 1 to 20 h and sintering temperature from 600 to 1000 °C in order to achieve densified composites. The relative density of the composites is found to be around 90% for the 10 h milled powders followed by compaction at a pressure of 700 MPa and sintering at a temperature of 1000 °C. The thermal expansion of the composites exhibits linear behavior in the temperature range 200 to 800 °C and the low coefficient of thermal expansion (CTE) is found to be for Cu–70%Y2W3O12 composite whose value, 4.32±0.75×10−6/°C, matches with that of Si substrate. The thermal conductivities are found to increase with a decrease in the volume fraction of the reinforcement and decrease with an increase in the temperature for all the samples. The experimentally determined CTE and thermal conductivity values are found to be comparable to those predicted by the thermal expansion based Kerner and Turner model and the thermal conductivity based Maxwell model, respectively.  相似文献   

9.
Alumina (Al2O3) and alumina-yttria stabilized zirconia (YSZ) composites containing 3 and 5 mass% ceria (CeO2) were prepared by spark plasma sintering (SPS) at temperatures of 1350-1400 °C for 300 s under a pressure of 40 MPa. Densification, microstructure and mechanical properties of the Al2O3 based composites were investigated. Fully dense composites with a relative density of approximately 99% were obtained. The grain growth of alumina was inhibited significantly by the addition of 10 vol% zirconia, and formation of elongated CeAl11O18 grains was observed in the ceria containing composites sintered at 1400 °C. Al2O3-YSZ composites without CeO2 had higher hardness than monolithic Al2O3 sintered body and the hardness of Al2O3-YSZ composites decreased from 20.3 GPa to 18.5 GPa when the content of ZrO2 increased from 10 to 30 vol%. The fracture toughness of Al2O3 increased from 2.8 MPa m1/2 to 5.6 MPa m1/2 with the addition of 10 vol% YSZ, and further addition resulted in higher fracture toughness values. The highest value of fracture toughness, 6.2 MPa m1/2, was achieved with the addition of 30 vol% YSZ.  相似文献   

10.
(SiC, TiB2)/B4C composites were fabricated by reactive hot-pressing B4C, Si3N4, -SiC and TiC powders, with (Al2O3 + Y2O3) as sintering additives. According to the thermodynamics principles, the possible reaction equations and the reaction products for the system were determined. By means of XRD, SEM of surface thermally etched and TEM the phase composition was determined. It was shown that the phase composition of sintered body was B4C, -SiC, BN and TiB2, and the matrix was B4C and -SiC. The typical values of hardness, bending strength, fracture toughness and the relative density of the composites can reach HRA 88.6, 554 MPa, 5.6 MPa m1/2 and 95.6%, respectively. Furthermore, the microstructures of the composites were analyzed by TEM, SEM and energy spectrum methods. The results show the presence of laminated structure and a clubbed frame dispersion phase and bunchy dispersion phase among the matrix. Some intragranular structures were also found in the B4C grains. Microstructural analysis indicates that the new formed phase, uniform and fine grains, and the layered and clubbed structure play an important role in improving the properties of the composites. Fractography and crack propagation suggest that crack deflection and crack bridging are the possible toughening mechanisms.  相似文献   

11.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

12.
This study presents a novel approach for the synthesis of porous calcium silicate hydrate (CSH) at a low hydrothermal temperature of 110 °C based on enhanced reactivity SiO2 (i.e. silica/polyethylene glycol (PEG2000) composites) as the source silica material. The as-prepared CSH materials exhibited a porous microstructure with a large number of small mesopores. The porosity formation mechanism of CSH was apparent that cavitation, resulting from sonication, enabled PEG2000 (via intercalation on silica) to break apart Si–O–Si structural units, thereby enhancing SiO2 reactivity at a low hydrothermal temperature. In addition, the presence of PEG2000 effectively prevented the aggregation of particles during the formation process of the porous CSH solid. The low temperature synthesis proposed herein represents a viable and effective method for the further development of porous CSH as a functional ceramic material.  相似文献   

13.
Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.  相似文献   

14.
Meldola blue immobilized on a new SiO2/TiO2/graphite composite was applied in the electrocatalytic oxidation of NADH. The materials were prepared by the sol-gel processing method and characterized by several techniques including scanning electronic microscopy coupled to energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electronic microscopy (HRTEM). Si and Ti mapping profiles on the surface showed a homogeneous distribution of the components. Ti2p binding energy peaks indicate that the formation of Si-O-Ti linkage is presumably the responsible for the high rigidity of the matrices. The good electrical conductivity presented by the composites (5 and 11 S cm−1) can be related to a homogeneous distribution of graphite particles observed by TEM. After the materials characterization, a SiO2/TiO2/graphite electrode was prepared and some chemical modifications were performed on its surface to promote the adsorption of meldola blue. The resulting system presented electrocatalytic properties toward the oxidation of NADH, decreasing the oxidation potential to −120 mV. The proposed sensor showed a wide linear response range from 0.018 to 7.29 mmol l−1 and limit of detection of 0.008 mmol l−1. SiO2/TiO2/graphite has shown to be a promising material to be used as a suitable support in the construction of new electrochemical sensors.  相似文献   

15.
BaOAl2O32SiO2 (BAS) glass–ceramic powders were prepared by sol–gel technique. SiC platelet reinforced BAS glass–ceramic matrix composites with high density and uniform microstructure were fabricated by hot-pressing. The effect of additional crystalline seeds on hexagonal to monoclinic phase transformation of Barium aluminosilicate was studied. The effects of SiC platelet content on the microstructure and mechanical properties of the composites were also investigated. The results showed that the flexural strength and fracture toughness of the BAS glass–ceramic matrix composites can be effectively improved by the addition of silicon carbide platelets. The main toughening mechanism was crack deflection, platelets' pull-out and bridging. The increased value of flexural strength is contributed to the load transition from the matrix to SiC platelets.  相似文献   

16.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

17.
Al2O3/SiC ceramic composites with Y2O3 as an additive, was synthesized using the Taguchi method of design of experiments, so as to develop statistically sound input output relationships. The proportion of SiC was varied from 12 to 21 vol.% whereas that of Y2O3 was varied from 2.5 to 4 vol.%. The composites were sintered at 1500 °C for a soaking time period of 12 h in an air atmosphere. Cracks were induced on the composite surface using a Vickers indenter with a load varying between 20 and 40 kg. Fractographical analyses have been carried out using optical and/or scanning electron microscopy to investigate the surface crack propagation behavior. Thermal aging at 1300 °C in the time range of 0.5-12.5 h was applied to find optimal conditions for healing of the pre-cracked samples. The output parameters such as crack length, healed crack length, hardness and fracture toughness of the samples were correlated with appropriate inputs such as contents of SiC and Y2O3, crack-healing temperature, healing time, compaction pressure, indentation load using statistical analysis. Further, the extent of influence, exerted by pertinent input parameters on output parameters, was also identified.  相似文献   

18.
Highly densified Al2O3/LiTaO3 (ALT) ceramic composites were fabricated by hot-pressing in a nitrogen atmosphere. The addition of Al2O3 particles could significantly improve the densification of LiTaO3. Sintering mechanism of the LiTaO3 ceramic incorporated with Al2O3 particles is proposed. Dielectric constant of 5 vol.% Al2O3/LiTaO3 (5ALT) composite ceramic was slightly increased in the range from 30 kHz to 106 Hz, but the dielectric loss was lowered in the whole range from 103 Hz to 106 Hz. Piezoelectric constant (d33) of the 5ALT ceramic composite is about 50% of that of LiTaO3 single crystal.  相似文献   

19.
Preparation of TiO2/SiO2 multilayer flakes and their application to decorative powders were investigated. In contrast to conventional products prepared through the multicoating of core platelets, the coreless TiO2/SiO2 multilayer flakes were prepared by detaching multilayer films from their substrates. These flakes exhibited structural colors, when the optical path length of both the TiO2 and SiO2 layers are adjusted to be one fourth of the wavelength of visible light. A multicoating of more than five layers resulted in the propagation of cracks, which prevented the preparation of thick flakes. Paint films fabricated using the multilayer flakes and acrylic resins showed reflectance spectra that were comparable with those obtained for multicoatings on substrates.  相似文献   

20.
The effect of Al2O3 on mechanical properties of Ti3SiC2/Al2O3 composite fabricated by SPS was studied systematically. The results show that the hardness of the Ti3SiC2/Al2O3 composite can reach 10.28 GPa, 50% higher than that of pure Ti3SiC2. However, slight decrease in the other mechanical properties was observed with Al2O3 addition higher than 5–10 vol.%, which is believed to be due to the agglomeration of Al2O3 in the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号