首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
将氧化铝弥散强化铜电极和黄铜-铬锆铜复合电极进行实验对比,探究点焊电极磨损情况。氧化铝弥散强化铜电极材料在重复焊接后,依旧保持良好的状态,端面、电极外形均未发生明显变形,适合焊接镀锌高强钢。合金化导致电极粘附镀锌层是氧化铝弥散强化铜电极的主要失效形式,黄铜-铬锆铜复合电极失效形式是端面变大,电极材料粘附在工件上。  相似文献   

2.
介绍了通过内氧化法制备的ZrO2弥散强化铜复合材料的微观组织,研究了Cu-ZrO2复合材料作为点焊用电极材料点焊镀锌钢板时的作用机理、失效形式,并与传统合金电极做一对比。结果表明:内氧化法制备的Cu-ZrO2复合材料组织均匀细小,在高温点焊条件下,仍具有较高的强度,较好的导电、导热性,点焊过程中电极的塑性变形及合金化都得到明显改善,适合做电极材料。  相似文献   

3.
熊灿  罗平  刘康  官旭  董仕节 《电焊机》2017,(12):113-116
在现代工业中广泛应用的点焊电极用铜合金材料多为铬铜、铬锆铜和Al_2O_3弥散强化铜,主要因其导电性、导热性、高温强度、硬度和可加工性。综述了多种强化技术的机理和工艺,通过对基体进行固溶时效和形变强化处理,或进行深冷处理,或通过Al_2O_3、TiB_2、石墨、碳纳米管等对基体进行弥散强化,可以有效地提高铜合金性能。展望了点焊电极用铜合金的强化技术。  相似文献   

4.
镀锌钢板的电阻点焊可焊性较差,导致其点焊电极过早失效,因此,点焊电极的强化引起了广泛的重视.主要强化方法分为基体强化和表面强化.点焊电极通常是Zr、Cr等强化并经冷作硬化的Cu合金,通过Al2O3、TiB2、ZrO2等对基体进行弥散强化,或对基体深冷处理,或通过渗金属Ti、电刷镀Co、离子注入W、电火花沉积TiC、TiB2、TiN等对电极进行表面强化,可有效地提高电极的使用寿命.其中,电火花沉积TiC、TiB2涂层电极是一种新的电极表面强化技术,经过广泛工业应用效果显著.  相似文献   

5.
压焊     
《机械制造文摘》2010,(1):16-17
镀锌钢板电阻点焊电极的失效分析 采用光学显微镜、X射线衍射等方法研究了铬锫铜电极在点焊镀锌钢板时的失效形式,对电极内部组织及其硬度、导电性能在焊接过程中的动态变化进行了监测、分析。结果表明:铬锆铜电极的失效形式主要是塑性变形、合金化和坑蚀;随点焊进行,电极内部发生再结晶和析出相长大,导致电极头部显微硬度明显降低。但对导电性能影响不大;铬锆铜电极失效后端面合金化产物为Cu5Zn8相。图6参10  相似文献   

6.
压焊     
镀锌钢板电阻点焊电极的失效分析 采用光学显微镜、X射线衍射等方法研究了铬锫铜电极在点焊镀锌钢板时的失效形式,对电极内部组织及其硬度、导电性能在焊接过程中的动态变化进行了监测、分析。结果表明:铬锆铜电极的失效形式主要是塑性变形、合金化和坑蚀;随点焊进行,电极内部发生再结晶和析出相长大,导致电极头部显微硬度明显降低。但对导电性能影响不大;铬锆铜电极失效后端面合金化产物为Cu5Zn8相。图6参10  相似文献   

7.
紫铜和不锈钢材料的薄板焊接是典型常见的异种金属材料连接。通过对T2紫铜和304不锈钢薄板的电阻点焊进行分析,利用弥散强化铜和钨烧结材料作为电极材料进行试验。通过优化工艺方法和措施,解决了T2紫铜与304不锈钢薄板的电阻点焊连接问题。  相似文献   

8.
随着小汽车行业镀锌钢板的使用量的剧增,原来使用的铬青铜电极材料已经不能满足点焊质量和大批量生产的要求了。用氧化铝弥散强化铜代替铬青铜制作点焊电极,可减少电极尖端变形、压溃,保证点焊质量和防止电极粘附,大大延长使用寿命。 1. 电极材料应当具备的性能汽车焊接生产线的焊接母材,有的是冷轧钢板;有的是镀锌钢板;也有的是这两种钢板的结合。这些焊接生产线,用焊接机器人进行自动化焊接,希望电极不发生粘附而延长使用寿命。特别是冷轧钢板与镀锌钢板焊接时容易发生粘附现象,缩短电极的使用寿命。电极材料应具备的各种性能是:  相似文献   

9.
TiB2/Cu复合材料作电极点焊镀锌钢板的失效分析   总被引:2,自引:0,他引:2  
研究了含 Ti B2 为 1.5 %的铜基复合材料 (Ti B2 /Cu)作电极在点焊镀锌钢板时的失效形式 ,结果表明 :Ti B2 /Cu电极在点焊镀锌钢板时的平均使用寿命是 Cu Cr Zr合金电极的 4倍 ,Ti B2 /Cu电极的失效形式主要是表面的合金化 ,少量的细碎翻边、粘附和坑蚀 ,不出现蘑菇状 ,是一种较好的点焊电极材料  相似文献   

10.
点焊电极表面电火花强化TiC-TiB2涂层   总被引:1,自引:0,他引:1  
以Ti、B4C和Cu等粉末为原料,采用自蔓延高温合成工艺制备TiC-TiB2复合材料,并通过电火花表面强化在点焊镀锌钢板用电极的表面制备TiC-TiB2复合强化层。用四探针法测量了强化层的电导率,利用SEM和XRD分析了强化层的微观结构和物相,运用点焊实验测试了强化电极的使用寿命,初步分析了强化层对电极失效的影响。结果表明:电火花强化层致密无明显分层,强化层与基体间为牢固的冶金结合;强化层物相主要为TiB2、TiC、B2O3和Cu等,强化层中的非晶组织和组织细化使其衍射峰宽化;TiC-TiB2复合强化层的导电率可达86.53%IACS,具有良好的导电性能,适合制作点焊电极材料;强化电极的点焊寿命比无强化层电极大约提高了4倍。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号