首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于边界效应和非牛顿效应的活塞杆密封润滑分析   总被引:1,自引:0,他引:1  
针对活塞杆密封平行间隙建立了适用于活塞杆密封的热流体润滑模型。以活塞杆内行程为例,研究了液压润滑剂的边界效应和非牛顿效应对密封件流体润滑模型油膜压力分布的影响,并与不考虑边界效应的牛顿流体润滑模型的油膜压力分布进行了比较。结果表明:对于活塞杆往复密封,在研究的工况范围内,边界效应和非牛顿效应对油膜压力分布都有一定的影响。相对滑动速度较高、油膜厚度较薄时边界效应对油膜压力分布的影响较大;特征剪应力较小时非牛顿效应较明显。  相似文献   

2.
为了研究弹性材料表面微织构对摩擦副空化现象和润滑特性的影响,建立考虑空化效应的二维弹性织构计算模型,采用流固耦合方法计算润滑流场与材料变形之间的相互作用。对比刚性材料表面微织构,从弹性模量、滑动速度、微织构深度以及织构间距等方面分析弹性材料表面织构对摩擦副润滑性能的影响,通过实验验证模拟结果的准确性。结果表明:弹性织构摩擦副比刚性织构摩擦副摩擦因数更小,润滑性能更好;存在最优织构深度,使得弹性织构摩擦副的摩擦力最小且承载力最大;适当增大滑动速度以及织构间距可以提高弹性摩擦副的润滑性能;随着弹性模量的降低,弹性变形和油膜厚度增加,空化现象更为显著,摩擦副的润滑性能得到提升。  相似文献   

3.
液压往复密封的技术进展   总被引:10,自引:0,他引:10  
概述了密封滑动面3种润滑状态的特点和判定方法,对在流体动静压润滑时密封接触面的压力分布和泄漏量计算的理论和实验方法作了综述,在分析现有国内外密封件组成的基础上,提出了将往复密封件的功能要求分解为良好的耐磨性和弹性,并通过结构和材料的组合,将满足耐磨性要求的主密封和满足弹性要求的副密封结合起来,可研制出新型的组合密封件,给出了应用新方法设计的往复动密封典型例子,并进行了详细分析。  相似文献   

4.
由于受倾覆力及刚体表面粗糙度影响,液压柱塞泵斜盘-滑靴运动副(滑靴副)在相对运动时处于混合润滑状态。斜盘和滑靴表面接触引起弹性和塑性变形,进而产生表面接触力。接触力与油膜厚度密切相关,在油膜特性分析时不应被忽略。提出一种基于流体动压润滑理论的滑靴副油膜特性(油膜厚度、压力分布、油膜间隙流量)的分析与计算方法,考虑了滑靴副粗糙表面的支撑力影响。在雷诺流体动压润滑方程基础上,考虑滑靴副刚体表面粗糙度水平和油膜厚度,计算液压柱塞泵不同工况下的表面接触支撑力,并将接触力融入运动副的受力方程。提出了基于改进的雷诺流体动压润滑方程的数值计算方法,并进行了仿真分析,通过间接对比滑靴副间隙流量的仿真结果,证实了提出方法的有效性和结果的准确性。  相似文献   

5.
本文先给出了全膜线接触弹流膜厚计算的统一公式,应用弹性流体动力润滑理论,探讨了凸轮油膜厚度的计算方法,利用MATLAB软件编制的程序可计算凸轮弹性流体润滑油膜厚度,凸轮膜厚比λ,从而能判断摩擦副之间的润滑状态,并对判断凸轮表面损伤坏形式,减少两接触表面的磨损,凸轮参数优化设计和使用寿命预测等具有重要意义。  相似文献   

6.
陈勇  刘晓明  黎泽金 《润滑与密封》2017,42(10):127-132
飞机舵机一般采用橡胶-聚四氟乙烯组合O形密封件密封活塞杆高压端面,舵机工作时的摩擦发热会导致密封件的密封性能下降。为研究密封性能的热效应,利用ABAQUS软件建立考虑三重非线性(材料非线性、几何非线性以及边界非线性)的热-结构耦合效应的组合O形密封件有限元模型,分析密封件在不同油压下的接触压力分布及密封性能。开发ABAQUS的重启动功能,研究不同油压、滑动速度以及摩擦因数3种因素对密封件在活塞杆滑动过程中的摩擦生热影响,得到密封件的局部温度场分布,探讨3种因素对温度场的影响规律。分析结果表明:密封件在活塞杆滑动过程中的最高温度随着油压、滑动速度和摩擦因数的增大而增大,其中摩擦因数的影响最为显著。  相似文献   

7.
液体调速离合器中摩擦副热效应的简化分析   总被引:1,自引:0,他引:1  
液体粘性调速离合器是利用多个摩擦圆盘间的油膜剪切力来传递动力,并通过改变油膜厚度实行无级调速。由于近来工程中广泛采用聚α-稀烃型,聚酯型等合成油作润滑剂,液体粘性调速离合器在调速范围内,其摩擦副往往工作在流体润滑、混合润滑、边界润滑直到直接接触的工况。基于这些特点,笔者采用了幂律型非牛顿流体模型、Patir—Cheng的平均流量模型、GT两粗糙平面接触模型,并计入油膜的惯性影响,建立了热简化研究模型,对液体粘性调速离合器中的摩擦副进行了流体混合润滑状态下的数值计算与分析。  相似文献   

8.
针对断路器液压操纵机构液压缸组件密封问题,开展了高保压液压缸组合密封仿真分析与装配精度控制研究,提出了一种基于油膜厚度的密封配合精度计算方法。利用弹性流体动力润滑理论计算出典型液压动密封的流体膜厚、泄漏量与黏性摩擦力以评估动密封性能,通过结构非线性有限元计算出的密封接触压力拟合出弹性润滑理论中密封处油膜压力,并使用一维稳态雷诺方程逆解建模以获得有限元接触压力和油膜厚度之间的关系,最终通过选配方法在精密偶件装配中进行了控制,并通过数值仿真与实验相结合来验证该方法的有效性。  相似文献   

9.
结合高温高压工况和齿形滑环组合密封的特点,基于热弹性流体动压润滑理论,建立了滑环组合密封在高压旋转时的数学模型。基于小变形理论,通过变形影响系数矩阵法得到齿形滑环组合密封在油膜压力作用下的弹性变形;结合流体动压润滑方程、温度场能量方程和粘温方程,使用有限差分法对热弹性流动压润滑模型进行求解,采用Matlab计算了齿形滑环组合密封圈在工作过程中的油膜厚度分布和油膜压力分布。分析结果表明:齿形滑环的粗糙度对密封性能有显著的影响,润滑油膜压力沿着轴向先增大后减小,周向油膜压力则在稳定范围内波动;同时,密封圈的油膜厚度和油膜压力随着环境温度的上升而减小。  相似文献   

10.
结合高温高压工况和齿形滑环组合密封的特点,基于热弹性流体动压润滑理论,建立了滑环组合密封在高压旋转时的数学模型。基于小变形理论,通过变形影响系数矩阵法得到齿形滑环组合密封在油膜压力作用下的弹性变形;结合流体动压润滑方程、温度场能量方程和粘温方程,使用有限差分法对热弹性流动压润滑模型进行求解,采用Matlab计算了齿形滑环组合密封圈在工作过程中的油膜厚度分布和油膜压力分布。分析结果表明:齿形滑环的粗糙度对密封性能有显著的影响,润滑油膜压力沿着轴向先增大后减小,周向油膜压力则在稳定范围内波动;同时,密封圈的油膜厚度和油膜压力随着环境温度的上升而减小。  相似文献   

11.
为探讨热流固耦合下柱塞泵配流副参数对摩擦性能的影响,建立配流副的润滑模型,采用有限差分法对雷诺方程、能量方程和弹性变形方程进行求解,考虑黏度-温度、黏度-压力的关系,利用松弛迭代法求得热流固耦合下油膜压力、弹性变形与油膜温度分布的数值解,并运用MATLAB得到油膜压力、弹性变形、油膜温度分布云图;分析配流副参数对油膜承载力、摩擦力、摩擦转矩和摩擦因数的影响。结果表明:缸体倾斜角度和初始油膜厚度对油膜承载力的影响较大,增大缸体倾斜角度和减小初始油膜厚度,可提高油膜承载能力;减小润滑油黏度、增大初始油膜厚度能有效降低润滑摩擦过程中的摩擦力和摩擦因数。  相似文献   

12.
针对无级变速器滑移模式下传动失效概率增大的问题,基于弹流润滑理论分析了不同传递转矩和相对滑动速度情况下,从动轮摩擦副油膜压力、厚度及其剪切应力变化情况,建立了安全裕度模型,基于油膜极限剪切应力与最大剪切应力计算了摩擦副的安全裕度,并确定了滑移控制的安全工作区域,为滑移控制策略的制定与优化提供了依据。研究结果表明:随着从动带轮传递转矩、相对滑动速度的增大,摩擦副的安全裕度逐渐减小;当传递转矩小于130 N·m时,在所有相对滑移速度范围内均可保证摩擦副油膜处于安全状态;当传递转矩大于130 N·m时,随着相对速度的增大,摩擦副油膜失效概率增大。  相似文献   

13.
为准确研究斯特封高速摩擦与密封特性,基于混合润滑理论,综合流体空化效应、密封接触变形和微观粗糙峰接触等因素影响,建立了斯特封摩擦与密封的数值计算模型.研究了往复运动速度和密封压力对油膜厚度、摩擦力和泄漏量的影响,搭建了往复密封试验台来验证模型的准确性.结果表明:计算摩擦力与实验摩擦力相近.混合润滑模型能更好地模拟高速柱...  相似文献   

14.
作为液压传动系统核心动力元件的轴向柱塞泵,超高压化是其必然发展趋势与要求,然而超高压化会造成其中关键的柱塞副摩擦界面油膜形成显著的固液耦合作用,对柱塞副油膜的摩擦润滑与密封承载性能产生规律尚不明确的影响。为此,建立一种基于变形矩阵法的固液耦合作用求解方法,该方法基于有限容积法解算油膜流体润滑方程,基于有限元法实现摩擦界面变形计算节点规则化设置及变形矩阵精准计算,在此基础上建立柱塞副油膜弹性流体动压润滑数值计算模型,针对采用软硬配对的柱塞副63 MPa超高压工况下的摩擦界面油膜固液耦合作用特性进行研究,结果表明:固液耦合作用有助于减小柱塞副处轴向黏性摩擦力和泄漏流量,一个周期内柱塞副总周向黏性摩擦力大小基本不变但分布更为集中,导致产生了更大峰值的瞬时摩擦力;显著的结构变形产生于柱塞副摩擦界面两端局部位置处,因而对泄漏流量不造成影响,在超高压工况下经过软硬配对跑合,固液耦合作用有助于原本标准柱形铜套孔形成类似“喇叭口”的一种微观形貌,增大了柱塞与铜套孔的接触面积,增强了密封超高压油的能力,降低了接触应力。建立的模型及研究结果可为轴向柱塞泵超高压化设计提供指导。  相似文献   

15.
考虑热变形和弹性变形等影响因素,对倾覆状态下滑靴副热流体动力润滑性能进行研究,主要分析讨论不同柱塞腔压力、主轴转速和进口油液温度等工况下热变形和弹性变形对滑靴副热流体动力润滑性能的影响。采用有限差分法联立求解雷诺方程和油膜厚度方程进行滑靴副油膜润滑分析,采用有限单元法计算滑靴表面变形,采用能量方程和热传导方程计算油膜温度。结果表明,计及热变形和弹性形变时,油膜压力和油膜厚度场在滑靴中心油室和边缘处出现凸起峰值;油膜温度场沿滑靴半径方向由内向外递减分布;柱塞腔压力越大,主轴转速和进油口温度越高,油膜厚度的振荡衰减特征越明显,摩擦转矩随油膜厚度减小而增大,处于柱塞泵的吸排油交替区时的油膜厚度和摩擦转矩出现峰值。  相似文献   

16.
提出将异型密封结构形式应用于汽车钳盘式制动器活塞的密封中,根据密封界面流体动力学中的弹性流体动压模型,建立制动液油膜的准一维流动的雷诺方程,给出制动活塞往复运动时的油膜厚度和泄漏量的计算方法。利用Fluent软件平台,对比分析制动活塞异型密封梅花形密封圈和标准型O形密封圈在往复运动过程中油膜厚度和制动液泄漏量受摩擦因数、制动压力、压缩量等因素影响规律。结果表明:梅花形密封圈和O形密封圈的油膜厚度随着摩擦因数的增大而增大,随着制动液压力和压缩量的增大而减小;但异型密封梅花形密封圈在相同的摩擦因素条件下有更好的润滑性能,泄漏量小,其油膜厚度相对于O形密封圈变化过程比较缓慢,降低了对密封圈的磨损;在压缩量较大的情况下,制动活塞梅花形密封圈的防泄漏能力大于传统的标准密封结构O形密封圈。制动活塞采用异型密封结构可有效减小密封圈的磨损量,有较好的防泄漏能力,能够实现良好的自密封。  相似文献   

17.
韩彦彬  仝崇楼 《润滑与密封》2006,(9):165-166,175
利用Herrebrugh给出的无量纲最小油膜厚度和弹性参数的数值计算结果,得出了在弹性-等粘润滑状态下,两者之间的关系式。在弹性-变粘润滑状态下,对Dowson油膜厚度公式进行了修正,给出了新的油膜厚度公式。计算结果表明,提出的油膜厚度计算公式计算结果更符合实测值。  相似文献   

18.
通过数值计算方法,研究了点接触脂润滑摩擦副表面存在凹坑时油膜厚度和油膜压力的分布规律,并与光滑表面条件下的油膜特性进行了对比。研究结果表明:点接触脂润滑摩擦副表面存在凹坑时,在凹坑边缘位置会出现油膜压力峰,而在凹坑中心周围油膜压力值较低;靠近入口处一侧凹坑边缘位置油膜厚度出现"凹陷"现象,润滑脂流经凹坑时油膜厚度则会"跃升";凹坑引起油膜压力和油膜厚度分布的变化会随着凹坑位置的变化而相应的变化;表面凹坑不利于点接触脂润滑摩擦副的润滑。  相似文献   

19.
为降低液压冲击活塞副的摩擦损耗,在活塞副表面构造圆柱形织构;综合考虑其泄漏和摩擦损失构建能耗分析指标,采用Hertz接触理论分析间隙密封结构的弹性变形,利用牛顿内摩擦定理提取摩擦力,结合二维弹流润滑Reynolds方程构建冲击活塞副能耗分析模型;提出采用有限差分法以及超松弛迭代收敛准则对冲击活塞副能耗分析模型进行数值求解;以YG45型液压凿岩机为例对冲击活塞副进行能耗分析,验证了该方法求解冲击活塞副能耗的有效性,并分析织构对降低冲击活塞副能耗的作用。结果表明:圆柱形织构表面能形成流体动压润滑膜,在全油膜润滑状态下织构的流体动压润滑效应会显著提高表面的承载能力;圆柱形织构改善了表面的润滑性能,大幅度降低了表面摩擦力,使得摩擦损失减小;增加织构使泄漏损失有所增加,但其增加幅度很小,对能耗影响可以忽略不计。  相似文献   

20.
针对液黏调速离合器接合过程中的挤压膜流动以及摩擦阶段过渡问题,综合考虑摩擦副表面粗糙度、表面油槽结构和流体惯性力等因素,根据流体动压润滑理论和GW粗糙接触模型,建立离合器接合过程的动力学模型,并采用有限体积法对平均流量雷诺方程求解,对挤压过程中的油膜压缩速度、油膜厚度、被动盘转速、传递转矩等动力学参数的变化规律展开了仿真分析。仿真结果表明,液黏调速离合器接合过程主要处于流体润滑阶段和混合摩擦阶段。流体润滑阶段黏性扭矩迅速增加,但是相对角速度变化不大,由于油膜厚度变化较快,在0.1 s左右进入混合摩擦阶段,该阶段油膜厚度变化较小,黏性扭矩逐渐下降至零,摩擦扭矩开始占据主导地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号