首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titania-incorporated silica (TiO2–SiO2) porous materials have great applications in diverse areas. In this work, TiO2–SiO2 porous materials with tunable Si/Ti molar ratio (R) have been successfully prepared through a one-pot method under a near-neutral condition. With decreasing Si/Ti R, a phase transition from a macroporous foam-like structure to mesostructure is observed. The resultant TiO2–SiO2 porous materials possess large surface areas and high pore volumes. In addition, the titania species are homogenously dispersed in silica matrix when Si/Ti R ≥ 10. Our contribution provides a convenient method to synthesize TiO2/SiO2 porous materials with very large pore size, high pore volume, and relatively high titania content well dispersed in the silica wall framework.  相似文献   

2.
Boron-containing bioactive glasses (BGs) are being extensively researched for the treatment and regeneration of bone defects because of their osteostimulatory and neovascularization potential. In this study, we report the effects of the ionic dissolution products (IDPs) of different boron-doped, borosilicate, and borate BG scaffolds on mouse bone marrow stromal cells in vitro, using an angiogenesis assay. Five different BG scaffolds of the system SiO2–Na2O–K2O–MgO–CaO–P2O5–B2O3 (with varying amounts of SiO2 and B2O3) were fabricated by the foam replication technique. Bone marrow stromal cells were cultivated in contact with the IDPs of the boron-containing BG scaffolds at different concentrations for 48 h. The expression and secretion of vascular endothelial growth factor (VEGF) from the cultured cells was measured quantitatively using the VEGF ELISA Kit. Cell viability and cell morphology were determined using WST-8 assay and H&E staining, respectively. The cellular response was found to be dependent on boron content and the B release profile from the glasses corresponded to the positive or negative biological activity of the BGs.  相似文献   

3.
The binders of historic mortars composed of small grain sized silica (SiO2) and carbonated lime (CaCO3) are considered as the main part that give hydraulic character and high strength to the mortar. In this study, FTIR, SEM–EDS, LIBS and XRD spectroscopy were used to find out the weight ratios of CaCO3 to SiO2 in the binders of historic lime mortars. For this purpose, a series of pure calcium carbonate and silica mixture were prepared in ten combinations in varying ratios from 0.5 to 5. Calibration curve was prepared for each analysis by plotting the peak area or intensity ratios of CaCO3 to SiO2 versus the weight ratios of CaCO3 to SiO2. A good linear correlation coefficient was obtained for each analysis respectively. The analyses were then tested on the binder of the Roman mortar samples. The results indicated that FTIR, SEM–EDS and LIBS spectroscopy are convenient tools to determine the weight ratios of CaCO3 to SiO2 in the binders of mortars. But XRD spectroscopy is not convenient for quantitative analysis of binders due to the presence of varied amounts of amorphous or poor crystalline silica in their compositions.  相似文献   

4.
SiC reticulated porous ceramics (SiC RPCs) was fabricated with polymer replicas method by using MgO–Al2O3–SiO2 additives as sintering aids at 1,000∼1,450 °C. The MgO–Al2O3–SiO2 additives were from alumina, kaolin and Talc powders. By employing various experimental techniques, zeta potential, viscosity and rheological measurements, the dispersion of mixed powders (SiC, Al2O3, talc and kaolin) in aqueous media using silica sol as a binder was studied. The pH value of the optimum dispersion was found to be around pH 10 for the mixtures. The optimum condition of the slurry suitable for impregnating the polymeric sponge was obtained. At the same time, the influence of the sintering temperature and holding time on the properties of SiC RPCs was investigated. According to the properties of SiC RPCs, the optimal sintering temperature was chosen at 1,300 °C, which was lower than that with Al2O3–SiO2 additives as sintering aids.  相似文献   

5.
Yolk/shell nanoparticles (NPs), which integrate functional cores (likes Fe3O4) and an inert SiO2 shell, are very important for applications in fields such as biomedicine and catalysis. An acidic medium is an excellent etchant to achieve hollow SiO2 but harmful to most functional cores. Reported here is a method for preparing sub-100 nm yolk/shell Fe3O4@SiO2 NPs by a mild acidic etching strategy. Our results demonstrate that establishment of a dissolution–diffusion equilibrium of silica is essential for achieving yolk/shell Fe3O4@SiO2 NPs. A uniform increase in the silica compactness from the inside to the outside and an appropriate pH value of the etchant are the main factors controlling the thickness and cavity of the SiO2 shell. Under our “standard etching code”, the acid-sensitive Fe3O4 core can be perfectly preserved and the SiO2 shell can be selectively etched away. The mechanism of regulation of SiO2 etching and acidic etching was investigated.
  相似文献   

6.
In the present research work, the preparation and characterization of bioactive glass-ceramic scaffolds for bone substitutes are described. The scaffolds were prepared by starch consolidation of bioactive glass powders belonging to the SiO2-Na2O-CaO-MgO system using three different organic starches (corn, potatoes and rice) as reported in a previous screening process [1]. The scaffolds, characterized by scanning electron microscopy, showed a porous structure with highly interconnected pores. The pores sizes assessed by mercury intrusion porosimetry put in evidence the presence of pores of 50–100 μm. The structure of the scaffolds was investigated by X-ray diffraction and revealed the glass-ceramic nature of the obtained material. The mechanical properties of the scaffolds were evaluated by means of compressive tests on cubic samples and the obtained results demonstrated their good mechanical strength. The in vitro bioactivity of the scaffolds was tested by soaking them in a simulated body fluid (SBF) and by subsequently characterizing the soaked surfaces by SEM, EDS and X-ray diffraction. Good in vitro bioactivity was found for the starting glass and for the obtained scaffolds. Moreover, the scaffold bioresorption, tested by measuring the samples weight loss in SBF at different periods of time, showed a partial resorption of the scaffolds. Cell culture testing of the three different scaffolds indicated no differences in cell number and in alkaline phosphatase activity; the morphology of the osteoblasts showed good spreading, comparable to bulk material which was used as the control.  相似文献   

7.
A SiO2 particle was prepared with different alkali sources, and then lamellar-stacked TS-1 catalysts were hydrothermally synthesized using the SiO2 particle as a silica source. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, nitrogen adsorption–desorption and UV–vis absorption spectra were used to characterize the TS-1 catalysts. The effect of the alkali source during the preparation of the SiO2 particle on the textural properties and catalytic performance of the TS-1 catalyst was thoroughly investigated. The TS-1 catalyst that was prepared with a SiO2 particle using tetrapropylammonium hydroxide (TPAOH) as an alkali source (TS-1-TPAOH) possessed more meso- and macro-pores and a higher framework Ti content than the catalyst that was prepared with a SiO2 particle using NH3·H2O as an alkali source (TS-1-NH3·H2O). As a result, the TS-1-TPAOH catalyst had a better catalytic performance for butanone ammoximation with H2O2 than conventional TS-1 and TS-1-NH3·H2O catalysts. Furthermore, the influences of reaction conditions, including reaction temperature, reaction time, the amount of catalyst and the molar ratio between H2O2 and butyl ketone oxime on the catalytic performance of the TS-1-TPAOH catalyst were evaluated. The unique structure of the lamellar-stacked TS-1 catalyst can effectively avoid the diffusing of large reactant molecules into zeolite channels and has potential applications in other oxidation reactions.  相似文献   

8.
We developed a facile and low-cost approach to prepare lightweight and high-strength magnesium–matrix composites with a nacre-inspired laminated structure. First, lamellar Mg2B2O5 whisker (Mg2B2O5w) scaffolds with initial solid loadings of 10, 15 and 20 vol% were prepared by ice templating. The wettability between a molten AZ91D alloy and the Mg2B2O5w scaffold was greatly improved by the incorporation of nano-SiO2 sol in the aqueous slurry, making the preparation of nacre-mimetic AZ91D/Mg2B2O5w composite by way of pressureless infiltration feasible. The SiO2 content in the Mg2B2O5w scaffold has a significant effect on the processing and the microstructure and properties of the composites. The optimum SiO2 content was about 6–8 wt% of the total ceramic loading. A lower SiO2 content resulted in incomplete infiltration, while a higher content led to the formation of a large quantity of Mg2Si in the composite. The flexural strength of the composites seemed independent of the initial ceramic loading (10–20 vol%), whereas the compressive strength and elastic modulus increased considerably and the crack-growth fracture toughness decreased with increasing ceramic content. The mechanism for such variations was addressed.  相似文献   

9.
We developed a process for preparing SiO2/TiO2 fibers by means of precursor transformation method. After mixing PCS and titanium alkoxide, continuous SiO2/TiO2 fibers were fabricated by the thermal decomposition of titanium-modified PCS (PTC) precursor. The tensile strength and diameter of SiO2/TiO2 fibers are 2.0 GPa, 13 μm, respectively. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) measurements, the microstructure of the SiO2/TiO2 fibers is described as anatase–TiO2 nanocrystallites with the mean size of ~10 nm embedded in an amorphous silica continuous phase.  相似文献   

10.
11.
Oxidation behavior of MoSi2 was investigated in air over the temperature range of 1400–1700 °C. Spallation of the SiO2 scale did not occur at any temperature, and Mo5Si3 formation did not happen below 1700 °C. A change in the rate-controlling mechanism was detected within the temperature range of this study. Activation energy for oxidation of MoSi2 at high temperatures was determined to be 204 kJ/mol. This value is less than the value of activation energy for oxidation of MoSi2 controlled by diffusion of O2 through amorphous SiO2 layer reported at lower temperatures. The decrease in activation energy is attributed to the increased degree of crystallization of amorphous silica to β-cristobalite at high temperatures resulting in enhanced O2 diffusion through SiO4−4 tetrahedral structure.  相似文献   

12.
The aim of this work was to use sol–gel processing to develop bioactive materials to serve as scaffolds for tissue engineering that will allow the incorporation and release of proteins to stimulate cell function and tissue growth. We obtained organofunctionalized silica with large content of amine and mercaptan groups (up to 25%). The developed method can allow the incorporation and delivery of proteins at a controlled rate. We also produced bioactive foams with binary SiO2–CaO and ternary SiO2–CaO–P2O5 compositions. In order to enhance peptide–material surface properties, the bioactive foams were modified with amine and mercaptan groups. These materials exhibit a highly interconnected macroporous network and high surface area. These textural features together with the incorporation of organic functionally groups may enable them to be used as scaffolds for the engineering of soft tissue.  相似文献   

13.
The aim of this study was to develop a novel bioactive, degradable and cytocompatible bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. Porous bredigite scaffolds were prepared using polymer sponge method. The bredigite scaffolds with biomimetic apatite layer (BTAP) were obtained by soaking bredigite scaffolds in simulated body fluid (SBF) for 10 days. The porosity and in vitro degradability of BTAP scaffolds were investigated. In addition, osteoblast-like cell morphology, proliferation and differentiation on BTAP scaffolds were evaluated and compared with β-tricalcium phosphate (β-TCP) scaffolds. The results showed that BTAP scaffolds possessed 90% of porosity. The degradation of BTAP scaffolds was comparable to that of β-TCP scaffolds. Cells on BTAP scaffolds spread well and presented a higher proliferation rate and differentiation level as compared with those on β-TCP scaffolds. Our results indicated that BTAP scaffolds were degradable and possessed the function to enhance cell proliferation and differentiation, and might be used as bone tissue engineering materials.  相似文献   

14.
Ba0.6Sr0.4TiO3 dielectric thin films doped by Cr(0, 1, 2.5, 5, 10 mol%) (BSTC) were prepared by radio frequency magnetron sputtering on Pt/Ti/SiO2/Si substrates. The structure and morphology of the BSTC thin films were studied by atomic force microscopy and X-ray diffraction. The effect of Cr doping on the dielectric properties of BST thin films were analyzed. The results show that the dielectric loss of Cr doping BST thin films is lower than that undoped, and the tunability increased with Cr doping. The thin film doped with 5 mol% Cr has the best dielectric properties. The tunability, loss and figure of merit (FOM) at 1 MHz were 38.9%, 0.0183, and 21.3, respectively.  相似文献   

15.
Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The crystalline structure and the surface morphology of the films were markedly affected by the growth conditions. Rietveld analysis reveal a CCTO film with 100 % pure perovskite belonging to a space group Im3 and pseudo-cubic structure. The XPS spectroscopy reveal that the in a reducing N2 atmosphere a lower Cu/Ca and Ti/Ca ratio were detected, while the O2 treatment led to an excess of Cu, due to Cu segregation of the surface forming copper oxide crystals. The film present frequency -independent dielectric properties in the temperature range evaluated, which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 600-nm-thick CCTO films annealed at 600 °C at 1 kHz was found to be 70. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10?7 A/cm2 at a 1.0 V. The current–voltage measurements on MFS capacitors established good switching characteristics.  相似文献   

16.
Tricalcium silicate (Ca3SiO5) cement, a novel self-setting biomaterial, has been shown to exhibit good hydraulic properties and excellent bioactivity. In this study, gentamicin sulfate (GS) was integrated into cement pastes and in vitro release of GS from the Ca3SiO5 cement was performed in deionized water, phosphate buffer saline (PBS) and HCl solutions with different pH at 37 °C, respectively. The results showed that the initial fast release of GS was restricted to a low level and prolonged release of drugs was achieved in water and PBS. The prolonged GS release is attributed to the interaction of GS with the calcium silicate hydrate network and the formation of unique nano-to-micro porous structure after hydration. Furthermore, GS release from milled powders of the hydrated cement suggested that the constrained GS could be released at low pH environment or during the degradation of the cement. When the samples were soaked in PBS, a nano-structured apatite layer was formed on the surface of the cement, which resulted in a relatively lower GS release rate as compared to that in water. The results suggest that Ca3SiO5 cement might be used as bioactive bone implant materials with drug loading and prolonged release properties.  相似文献   

17.
Cu/SiO2 catalyst with bimodal pore structure was prepared by co-gelation reactions of tetramethoxysilane (TMOS) and copper nitrate in the presence of poly (ethylene oxide) (PEO) with an average molecular weight of 10,000 and the catalyst of acetic acid. In this process, the interconnected macroporous morphology was formed when transitional structures of spinodal decomposition were frozen by the sol–gel transition of silica. The addition of copper into the silica–PEO system had a negligible effect on the morphology formation. In gel formation, it was found that the crystallite sizes of the CuO estimated from the peak width in the Cu/SiO2 with the presence of PEO were not small as expected. It was considered that there was no obvious interaction between the Cu cation and PEO, most of the copper ions in wet silica gel were present in the outer solution. They easily aggregated as copper salts in the drying process of wet gel and decomposed into CuO particles in heating. While in the Cu/SiO2 with the absence of PEO, the Cu was selectively entrapped as small particles in the gel skeleton due to the interaction between Cu aqua complex and silica gel network.  相似文献   

18.
SiO2, SiO2/PEG and SiO2/PDMS xerogels were examined as polymeric carriers for the controlled release of cisplatin—an antineoplasmic medicine. Drug/carrier systems were prepared by the sol–gel method. The effect of organic substitution of the silica xerogel matrix and drying conditions on the release of cisplatin was evaluated. Based on the presented results of the study it may be stated that sol–gel method is useful for entrapping a cisplatin in the pores of organically modified silica gels and for releasing cisplatin mainly in the way of diffusion from the pores of the lattice under the in vitro conditions. The use of organic impurities in silica gel increased the release of cisplatin from xerogel (from 62% to 97% within 7 days), and thermal treatment of all xerogels with cisplatin at the temperature of 80 °C resulted in the acceleration of the drug release (2 days) and increase of the released drug (89–98%).  相似文献   

19.
The microstructural evolution during direct laser sintering of LSD (Layerwise Slurry Deposition)—samples in the Al2O3–SiO2 system has been investigated. Slurries with a water content of 34 wt.% and a SiO2/Al2O3—ratio of about 3:1 have been used to manufacture layers which—after consecutive drying—have been sintered and laminated by laser treatment. Densified samples can be obtained with laser irradiances from 190 to 270 kW/cm2 and scan velocities between 35 and 65 mm/s. Elemental mappings of the layers’ cross sections suggest an inhomogeneous phase distribution in the laser sintered LSD samples with a slight alumina concentration gradient. A lower degree of particle melting in the bottom region of the layers is plausible due to attenuation of the laser beam intensity. SEM and HRTEM micrographs show that after a few seconds of laser treatment relictic starting phase, crystalline alumina plus amorphous silica, occur together with needle like mullite, the latter formed within an amorphous aluminosilicate phase. The resulting phase assemblage reflects the non-equilibrium conditions which can be expected for short time laser treatments. Mullite nucleation within the bulk of the liquid phase rather than in the vicinity of the parent alumina phase suggests that dissolution of alumina is the rate controlling step. Subsequent thermal post treatment in air in a conventional sintering furnace causes an increase of density to about 96% and leads to additional phase reactions. Amorphous silica transforms into cristobalite and the amount of alumina is reduced by additional mullite formation. By both coalescence of individual crystals and grain growth the morphology of the newly formed mullite changes during post heat treatment.  相似文献   

20.
For the first time, magnus green salt (MGS, [Pt(NH3)4][PtCl4]) fibers precipitated by solvent modification have been employed as a structure-directing modifier to synthesize single silica and silica/titania microtubes via a sol–gel process. In the case of titania tubes, tetraethylorthosilicate must be used as a capping agent to hinder the aggregation of primary MGS fibers and to serve as a protective layer against thermal stress during the metal salt fiber reduction. This implies that SiO2/TiO2 tubes result. The synthesized tubular materials were imaged by scanning and transmission electron microscopy, while their composition was determined by energy dispersive X-ray analysis and thermogravimetric analysis. Crystallinity and thermal stability of the tube walls were studied using X-ray diffraction analysis. The obtained oxide tubes possess high aspect ratios (80–200) because they are up to 60 μm in length, but only 300–700 nm in thickness. The key aspects of the synthesis approach are that the templating MGS fibers control the internal diameter of the oxide tubes, while the synthesis conditions control their wall thickness. The suggested method is a simple approach which produces, at low temperatures, very long oxide tubes with a very high amount of Pt (48–51 wt%) directly incorporated inside the tubes. To the best of our knowledge, filling of SiO2 or SiO2/TiO2 nanotubes with such a dense population of Pt metal nanoparticles has not been demonstrated so far; our own experiments with [Pt(NH3)4](HCO3)2 as templating salt formed only tubes containing about 40 wt% Pt and were only about 20 μm long. The now formed more Pt-rich tubes are expected to have vivid applications in (photo)catalysis and in fabricating novel devices, such as nano- or sub-microcables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号