首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
针对传统Z源并网逆变器升压能力有限、启动冲击较为严重、输入电流断续造成直流电压利用率低等方面的不足,对传统的阻抗网络进行改进,提出一种改进型Z源并网逆变器拓扑。该拓扑在传统的阻抗网络的基础上增加一个有源开关及电感,与传统阻抗网络中的输入二极管在前级构成一个等效Boost电路,提高了传统Z源逆变器的升压能力,电感的加入也限制了启动冲击电流,并保证了输入电流的连续。在理论分析的基础上,对基于改进型Z源逆变器的单相并网系统进行了仿真及实验研究,结果均表明该拓扑能够以实现单位功率因素并网,且启动过程平缓,输出电能质量好,系统效率高,验证了该拓扑的可行性及性能的优越性。  相似文献   

2.
王先强 《电工技术》2013,(12):82-84
针对传统Z源逆变器电路体积庞大、起动冲击较为严重、输入电流断续、直流侧电压利用率低等方面的不足,提出一种改进型Z源逆变器拓扑。该拓扑相对于传统Z源逆变器而言,减少了阻抗网络中高压电容的数量,从而减小了电路的体积及设计成本。同时。该拓扑不存在起动冲击问题,从而不需要采用软起动策略,也保证了输入电流连续,减小了对直流源使用寿命的影响,提高了直流侧电压利用率。在理论研究的基础上,基于简单升压控制下的仿真结果验证了该拓扑的正确性与优越性。  相似文献   

3.
改进型Z源逆变器   总被引:2,自引:0,他引:2  
针对传统Z源逆变器的直流升压因子较小、启动冲击严重、直流侧的电压利用率较低等缺点,提出了一种改进型的Z源逆变器拓扑.在传统拓扑中加入一个电感和一个全控开关,提高了直流升压因子,利用该电感上的电流不能突变的特性,使得启动时阻抗网络上的电容的冲击电流大幅减小,从而不需要采用软启动策略;同时该拓扑还保证了输入电流连续,减小了...  相似文献   

4.
提出了一种新颖的强升压能力的单级三相电压型准Z源光伏(photovoltaic,PV)并网逆变器,并对这种逆变器的电路拓扑、改进的空间矢量脉宽调制(space vector pulse width modulation,SVPWM)控制策略和低频工作模式、高频开关过程、外特性等稳态原理特性进行了深入研究,获得了重要结论和电压传输比表达式。该电路拓扑是由大升压比准Z源阻抗网络、三相逆变桥和三相LCL滤波器构成,该改进的SVPWM控制策略为大升压比阻抗网络储能电容电压控制和光伏电池最大功率跟踪(maximum power point tracking,MPPT)外环并网电流内环控制。实验结果验证了采用改进SVPWM控制策略的准Z源逆变器的实际性能。所提出的准Z源逆变器为实现低输入电压或宽变化范围输入电压的新能源并网发电提供了一种有效方法。  相似文献   

5.
Z源逆变器最新进展及应用研究   总被引:3,自引:0,他引:3  
Z源逆变器利用其独特的阻抗网络来实现升降压变换,从而能更好地适用于输入电压宽范围变化的场合.介绍了传统Z源逆变器的工作原理及特点,由于存在电容电压应力高、启动冲击电流大的缺陷,又对比分析了两种Quasi-Z源逆变器和新型Z源逆变器的改进情况;然后归纳了各种Z源逆变器的应用,并以光伏系统中的应用为例,对比介绍了已有的Z源逆变器的并网控制方法;分析了Z源逆变器并网系统目前存在的问题,对其今后的发展方向做出了展望,并指出Z源系统中的谐波、无功电流等电能质量问题将是今后的研究热点.  相似文献   

6.
针对传统Z源拓扑所存缺陷,提出一种改进型Z源拓扑。该拓扑中,用耦合电感代替传统结构中与电源正极相连的电感,阻抗网络相对于三相逆变桥位置发生改变;此外在直流链处增加全控型IGBT器件,用于单独插入直通零矢量。分析其在电压型和电流型模式的工作状态可知:相比于传统Z源逆变器,在电压型模式工作时,该拓扑可实现更高的电压增益,稳态时电容电压应力更低且不存在启动冲击电流,逆变侧输出电压波形质量更高;在电流型模式工作时,其启动压降较低,逆变侧输出电流波形质量较高。最后为实现对该逆变器的并网控制,在两相旋转坐标系下建立系统数学模型,运用两电流环和一电压环实现其高功率因数并网。算例结果验证了所提策略的有效性。  相似文献   

7.
提出一种新型Quasi-Z源逆变器拓扑,该拓扑是将2个传统的电流连续型Quasi-Z拓扑进行并联。对比于传统Quasi-Z源逆变器,该拓扑的输入侧电流连续,有效降低阻抗网络中的一个电容的电压,提高了升压比,有效降低了器件电压应力,提高了系统的可靠性。通过采用SVPWM最大恒定升压调制策略进行调制,设计了基于dq坐标系电流解耦及阻抗网络电容电压恒定的原理控制,并将该拓扑应用于三相并网系统。  相似文献   

8.
提出一种直通物理分离型Z源逆变器,通过在传统阻抗网络拓扑结构上引入1个二极管、1个电容和1个全控型器件,有效降低了启动冲击电流和Z源网络电容电压应力,实现了升压因子和调制因子的解耦控制,提高了Z源网络的升压能力。基于直通物理分离型Z源逆变器数学模型,研究了以并网电流控制为内环、直流母线电压控制为外环的双闭环PI控制方案。在理论分析的基础上,对直通物理分离型Z源逆变器并网进行仿真及实验研究,结果表明:系统启动电流冲击小,并网功率因数高,鲁棒性强,动态性能稳定,验证了拓扑结构的正确性和控制策略的优越性。  相似文献   

9.
为提高准Z源逆变器的升压能力和并网电流质量,提出了一种采用重复控制的强升压能力的单级三相电压型准Z源光伏并网逆变系统,并对这种逆变系统的电路拓扑、改进的空间矢量脉宽调制(space vector pulse width modulation,SVPWM)控制策略、离散控制系统的稳定性和调制器设计进行了分析。该系统电路拓扑是由大升压比准Z源阻抗网络、三相逆变桥和三相LCL滤波器构成;改进的SVPWM控制策略包括光伏阵列最大功率点跟踪控制和储能电容电压外环、并网电流内环控制,其中并网电流内环采用逆变器侧电流反馈控制策略,且融入了电网电压比例前馈、重复控制和PI串联的嵌入式复合控制来提高并网电流质量。实验结果证实了所提逆变系统电路拓扑、控制策略和系统设计的有效性。  相似文献   

10.
为提高准Z源逆变器的升压能力和并网电流质量,提出了一种采用重复控制的强升压能力的单级三相电压型准Z源光伏并网逆变系统,并对这种逆变系统的电路拓扑、改进的空间矢量脉宽调制(space vector pulse width modulation,SVPWM)控制策略、离散控制系统的稳定性和调制器设计进行了分析。该系统电路拓扑是由大升压比准Z源阻抗网络、三相逆变桥和三相LCL滤波器构成;改进的SVPWM控制策略包括光伏阵列最大功率点跟踪控制和储能电容电压外环、并网电流内环控制,其中并网电流内环采用逆变器侧电流反馈控制策略,且融入了电网电压比例前馈、重复控制和PI串联的嵌入式复合控制来提高并网电流质量。实验结果证实了所提逆变系统电路拓扑、控制策略和系统设计的有效性。  相似文献   

11.
采用Z源变换器的小型风力并网逆变系统   总被引:3,自引:0,他引:3  
基于Z源变换器的小型风力发电并网系统的工作特点及控制结构,不同于传统的电压型逆变器,Z源变换器引入特定的阻抗源网络将变换器主电路和电源耦合在一起,并且通过新增直通零矢量调制实现独特的直流升压功能,从而得到大范围变化的交流输出电压.经过对系统电路和要求的分析,文章对控制系统进行简单的设计.通过原有正弦波调制因子的控制,实现内环并网电流的单位功率因数运行和外环Z源电容电压的稳定;通过直通零矢量调制对发电机输出整流电流进行闭环控制,实现风力发电机的电能输出控制.最后,以2.5kW Z源变换器装置进行实验,实验结果验证了分析的正确性.  相似文献   

12.
增强型Z源逆变器的直流链电压直接控制策略   总被引:1,自引:0,他引:1  
增强型Z源逆变器与传统Z源逆变器相比不仅具有很强的升压能力,而且很大程度减小Z源网络电容、开关器件电压应力.但Z源逆变器现有控制策略是通过测量电容电压构建闭环间接控制直流链峰值电压,而Z源网络电容电压并不能准确反映直流链电压的动态特性.为了提高增强型Z源逆变器的直流链电压动态响应速度和控制精度,借助于数学建模,提出一种直流链电压直接控制的闭环控制策略,通过直接测量直流链峰值电压来提高系统的控制精度,采用电感内环、直流链峰值电压外环的双闭环控制提高了系统的动态响应速度,有效地抑制非最小相位特性对系统地影响.仿真和实验结果证明控制器对输入和负载扰动具有很好抑制能力.  相似文献   

13.
黄昕宇  张栋良 《电测与仪表》2019,56(11):145-152
针对传统Z源拓扑存在升压能力有限,电容电压应力较大以及电感启动电流过高等问题,本文提出一种新型准Z源三电平逆变器拓扑。相比较传统Z源网络的两个电感与电容,新拓扑上下结构对称,由四个电感、四个电容以及两个导通二极管构成;同时,新拓扑在保证升压能力不变的前提下能够显著抑制电感启动电流和降低电容电压。最后,仿真和实验验证了本文提出的一种新型准Z源三电平逆变器拓扑的有效性。  相似文献   

14.
基于Z源逆变器的光伏并网系统,其工作特点及控制结构不同于传统的电压型逆变器,可以利用逆变器桥臂直通状态实现升压功能,从而满足光伏电池电压大范围变化场合下的并网要求.对控制系统进行了详细的设计和分析,研究了一种加入直通零矢量的Z源变流器串联双环控制方案,实现了最大功率点跟踪(MPPT)和并网控制.最后,以3 kW的Z源变换器装置进行实验.实验结果验证了该控制方案的正确性.  相似文献   

15.
This paper proposes a new double-input Z-network for application in wind energy conversion system (WECS) which is composed of two same DC voltage sources as input sources, two inductors and one capacitor. As a result, the presented structure requires less capacitor number compared to traditional Z-network and it will be able to deliverer energy of both DC sources to local load or grid. The proposed inverter is applicable in dual-star PMSG based WECS, since it requires two DC voltage sources in same value. Besides, dynamic modeling of dual-star PMSG is presented to analyze proposed WECS connected to grid which employs dual-star PMSG and double-input Z-source inverter. The proposed dual-input Z-source inverter controls maximum power point tracking (MPPT) and delivering power to the grid. Therefore, other DC–DC chopper is not required to control two sets of rectified output voltage of generator in view of MPPT. As a result, the proposed topology requires less power electronic switches and the suggested system is more reliable against short circuit. The ability of proposed WECS with dual-star PMSG and double-input Z-source inverter is validated with simulation results and experimental tests using PCI-1716 data acquisition system.  相似文献   

16.
针对传统双Z源二极管箝位(NPC)型五电平逆变器的Z源网络电感启动电流过大、升压能力有限等问题,提出一种新型的双准Z源NPC型五电平逆变器拓扑结构。用一种新型的双准Z源结构代替传统的双Z源结构,能够降低近2/3的Z源网络电感启动电流,提升逆变器直流侧电压接近2倍。将滑模控制应用到准Z源五电平逆变器系统的控制中,该方法无需线性化处理,只需通过系统数学模型就可推导出适当的控制规律。分析新型双准Z源五电平逆变器拓扑的工作原理;应用状态空间法和小信号模型对准Z源五电平并网系统进行数学模型推导和分析,并进行滑模控制器的设计;仿真和硬件实验结果表明,与传统比例-积分(PI)控制相比,滑模控制能够显著提高系统稳定性,降低电流谐波。  相似文献   

17.
Z源逆变器属于单级系统,具有结构简单,允许逆变桥同一桥臂上下功率器件直通,输出波形畸变小等优点,在光伏发电等输入电压变换范围比较大的场合具有很好的应用前景。在光伏并网系统中,并网电流的频繁变化将会对电网的电能质量带来负面影响。为此,本文结合单相Z源光伏并网逆变器的特点,提出了通过Z源电容电压变化来调节并网电流幅值的控制方法。该方法能够减小并网电流的波动,从而改善并网电流的波形质量。实验结果证明了该控制策略的有效性。  相似文献   

18.
汤雨  谢少军  张超华 《电源学报》2009,7(3):214-220
针对传统Z源逆变器存在的一些缺陷,有文献研究了Z源逆变器拓扑的改进问题,目前存在两种改进的Z源逆变器拓扑。其中一种将输入电源插入到Z源网络中,带来的优点是输入电流连续,并可以减小其中一个电容的耐压;另一种输入电源与负载位于同一侧,可以减小Z源电容的电压,并可以实现变换器的软启动。本文在分析改进拓扑稳态工作原理的基础上,对三种拓扑进行了对比分析,并给出了仿真和实验研究的结果,验证了理论分析的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号