首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate clinically, histologically and histometrically the use of hydroxyapatite-coated dental implants in conjunction with maxillary sinus augmentation procedures. In 4 adult male Rhesus monkeys (Macaca mulatta) the 3 maxillary molars on 1 side of the jaws were extracted and the remaining bone between the alveolar crest and the floor of the sinus was reduced to 3-4 mm. After 3 months, maxillary sinus augmentation procedures were performed in each monkey and the sinuses were grafted with a porous hydroxyapatite bone graft (Interpore-200). At the same time, 2 hydroxyapatite-coated cylinder implants (IMZ) were immediately placed into the augmented sinuses (i.e. simultaneous-implants-loaded group). Four months later, 2 additional similar implants were placed into the previously augmented sinuses (i.e. delayed-implants-loaded group). After 4 months, the abutment connection was performed and all 4 implants were loaded with a gold-alloy bridge for 6 months (i.e. until sacrifice of the animals). The contralateral side of each monkey received the same treatment with the exception that removal of the maxillary molars was performed 7 months after those in the opposite side, and that the implants in this side were not loaded. Thus, 2 additional study groups (i.e. simultaneous-implants-unloaded group and delayed-implants-unloaded group) were obtained. Clinically, all loaded and unloaded implants were stable the day of sacrifice. Histologically, the grafted sinuses exhibited a significant amount of new bone formation with integration of the porous hydroxyapatite graft particles and hydroxyapatite-coat of the dental implants to the new bone. Histometric analysis indicated that on the loaded side the implants placed simultaneously with the sinus lift procedure exhibited greater direct mineralized bone-to-implant contact than the delayed placed implants. In addition, the percentage of direct mineralized bone-to-implant contact was significantly greater in the residual bone in comparison to the augmented area in all groups. Loading of the implants exhibited a positive effect on the percentage of direct mineralized bone-to-implant contact in the augmented area. It could be concluded that hydroxyapatite-coated implants may be of benefit when used in conjunction with sinus augmentation procedures.  相似文献   

2.
The osteogenesis of mandibular bone to endosteal dental implants was examined using an in vivo dog model. One half of the implants examined were unloaded implants, with the remaining one half prosthodontically loaded for 6 months. Undecalcified mandibular implant samples were examined with both high-voltage electron microscopy (HVEM) stereology and routine transmission electron microscopy. The osseous interface to integrated implants was shown to vary in its morphology. Mineralized bone was observed directly apposing the implant, often separated from the implant by an electron-dense deposit of approximately 50 nm. Within this densely mineralized matrix, osteocytes were routinely observed. Adjacent areas were shown to contain slightly wider zones of either a less dense mineralized matrix or, alternatively, unmineralized tissue. Other zones consisted of wider unmineralized matrices containing collagen fibers and osteoblasts. These latter zones were consistent with the appearance of an appositional type of bone growth. Because bone is a dynamic, actively remodeling tissue, a varied morphology of the support tissues to dental implant is not unexpected. Areas of mature bone interfacing with successfully integrated implants were demonstrated, as well as areas adjacent to the mature bone that were undergoing remodeling or mineralization. This study has also shown that HVEM stereology is a valuable research tool to investigate the oral tissue interface with dental implants.  相似文献   

3.
The aim of this study was to evaluate clinically, histologically and histometrically the use of anorganic bovine bone matrix (i.e. Bio-oss) as a grafting material for maxillary sinus augmentation procedures. In 4 adult male rhesus monkeys (i.e. Macaca mulatta) the 1st, 2nd and 3rd maxillary molars on one side of the jaws were extracted. The remaining bone between the alveolar crest and the bottom of the sinus was then reduced to 3-4 mm. After 3 months, maxillary sinus augmentation procedures were performed on one side of the jaws in each monkey and the sinuses were grafted with the bovine bone matrix. At that time, 2 IMZ pure titanium plasma coated implants were immediately placed into the augmented sinuses (i.e. simultaneous implants-loaded group). After 4 months, 2 additional similar implants were placed into these previously augmented sinuses (i.e. delayed implants-loaded group). Four months later, the abutment connection was performed and all 4 implants were loaded with a gold-alloy bridge for 6 months (i.e. until sacrifice of the animals). The contralateral side of each monkey received the same treatment with the exception that the extractions were performed 7 months after those in the opposite side and that the implants in this side were not loaded. Thus, 2 additional study groups (i.e. simultaneous implants-unloaded group and delayed implants-unloaded group) were obtained. Clinically, all loaded implants were stable at the day of sacrifice. Histologically, the grafted sinuses exhibited significant bone formation with integration of the bovine bone matrix particles to the new bone. Direct mineralized bone-to-implant contact was greater for the delayed implant placement groups than for the implants installed simultaneously with the sinus augmentation. Furthermore, the percentage of direct mineralized bone-to-implant contact was greater in the residual bone than in the augmented area. It was concluded that the anorganic bovine bone matrix facilitated bone formation and implant osseointegration in the augmented sinuses and that the delayed implant placement in combination with the sinus augmentation procedure seemed to be preferable.  相似文献   

4.
A commercially pure titanium threaded implant was compared to a hydroxyapatite-coated threaded implant of similar geometric design and dimensions in the canine model. Bilateral posterior implants supported fixed prostheses, and some implants in the same mandibles served as unloaded control implants. Implants were evaluated clinically, radiographically, and histomorphometrically at the light microscope level to detect any differences in bone response to loaded conditions. No statistically significant differences were found between the two implant designs under loaded or nonloaded conditions with regard to mobility, probing depth, percentage of osseointegration, and crestal bone position.  相似文献   

5.
This investigation was initiated to develop a method to provide patients with a fixed provisional prosthesis placed at the time of implant placement. Sixty-three standard 3.75-mm Nobel Biocare implants of varying lengths were placed into mandibular sites in 10 patients and followed for up to 10 years. Twenty-eight implants were immediately loaded at implant placement, providing support for fixed provisional prostheses, while 35 adjacent implants were allowed to heal submerged and stress-free. Following a 3-month healing period, the submerged implants were exposed and definitive reconstruction was accomplished. All 10 prostheses supported by 28 implants placed into immediate function at the time of implant placement were successful during the 3-month healing period. Of these 28 implants placed into immediate function, 4 ultimately failed. Of the 35 submerged implants, all are osseointegrated and in function to date. Life-table analysis demonstrates an overall 10-year survival rate of 93.4% for all implants. The 10-year life-table analysis of survival is 84.7% for immediately loaded implants and 100% for submerged implants. Statistical analysis of the submerged versus immediately loaded implants demonstrates failure rates for immediately loaded implants to be significantly higher (P = .022 by the log rank test). These data demonstrate that although mandibular implants can be successfully placed into immediate function in the short term to support fixed provisional prostheses, long-term prognosis is guarded for those implants placed into immediate function distal to the incisor region.  相似文献   

6.
KJ Pansegrau  KL Fridrich  D Lew  JC Keller 《Canadian Metallurgical Quarterly》1998,56(9):1067-73; discussion 1073-4
PURPOSE: This study was undertaken to compare the rate and degree of osseointegration of dental implants when placed into either autogenous corticocancellous chip or freeze-dried corticocancellous chip bone grafts. MATERIALS AND METHODS: The canine ilium was used as the model site. Thirty experimental and 15 control implants were placed in 15 dogs: autogenous versus freeze-dried corticocancellous chip bone grafts around the exposed implant surfaces. In addition to the placement of control implants, the apical portion of the grafted implants acted as their own control. The implants were harvested at 1, 2, and 3 months. The evaluation of the integration process was performed by means of light microscopy, microradiography, and histomorphometry. RESULTS: Using this model, the results indicate that at 1 month there was no statistical difference in the degree of osseointegration in the two bone grafts. At 2 months, there was a statistically greater degree of osseointegration noted in the autogenous corticocancellous chip sites than in the freeze-dried bone grafts. At 3 months, the degree of osseointegration in the two groups was 70% and 33%, respectively. At 3 months, there was virtually 100% integration with trabecular bone at the control implant sites. CONCLUSION: The results indicate that at 2 months postoperatively implants placed in an autogenous bone chip graft osseointegrate to a significantly greater degree than implants placed in a freeze-dried bone chip graft, and this difference remains at 3 months.  相似文献   

7.
The specific aim of this study was to determine the response of alveolar bone after it was augmented vertically using distraction osteogenesis and subsequently loaded with implant restorations. Four dogs each had four implants placed horizontally into an edentulous mandibular quadrant and, after integration, a distraction osteogenesis device was fabricated in the laboratory. An osteotomy was made to allow the crest of the alveolar ridge to be distracted vertically. After 10 mm of vertical distraction, the device was stabilized with light cured resin. Following bone fill confirmation of the distraction gap at 10 weeks, two implants were placed into the ridges, one in distracted bone and one in nondistracted bone. After 4 months for implant integration, freestanding prostheses were fabricated. Crestal bone levels were evaluated throughout the period of function. Animals were sacrificed after 1 year of loading, for histologic evaluation of the bone. The vertical ridge augmentation averaged 8.85 +/- 1.05 mm after 10 weeks of healing following distraction, without change over 1 year of implant loading. Histologic examination showed that bone had formed between the distracted segments, creating an augmented ridge. The average thickness of the labial cortex in the distraction gap was significantly thinner than the lingual cortex in distracted bone and the lingual and labial nondistracted cortical bone. The presence of the dental implant did not significantly affect cortical bone thickness. Serial sections showed that implants remained integrated and functional without soft tissue inflammation. Dental implants placed into alveolar ridges augmented with the technique of distraction osteogenesis maintained bone and were functional for the length of this study.  相似文献   

8.
The aim of the present experiment was to (i) study the healing after 3 and 7 months of bone defects filled with cancellous bovine bone mineral and (ii) compare the healing around implants placed in normal bone and in defects filled with bovine bone mineral. 5 beagle dogs, about 1-year-old, were used. At baseline, extractions of all mandibular left and right premolars were performed. Bone defects were prepared in the left mandibular quadrant. The defect was immediately filled with natural bovine cancellous bone mineral particles (Bio-Oss, Geistlich Sons Ltd. Wolhusen, Switzerland). No resective surgery was performed in the right jaw quadrant. In both quadrants the flaps were adjusted to allow full coverage of the edentulous ridge and sutured. 3 months later, 2 dogs (group I) were euthanized and biopsies from the premolar regions obtained and prepared for histologic analysis. The 3 remaining dogs (group II) were at this time interval (3 months) subjected to implant installation in the premolar region of both the right and left mandibular jaw quadrants. 2 fixtures of the ITI Dental Implant System (Straumann, Waldenburg, Switzerland; solid-screw; 8 x 3.3 mm) were installed in each side. The fixtures in the test side were placed within the previously grafted defect area, while the fixtures in the control side were placed in normally healed extraction sites. A 4 month period of plaque control was initiated. At the end of this period, a clinical examination including assessment of plaque and soft tissue inflammation was performed and radiographs obtained from the implant sites. Biopsies were harvested and 4 tissue samples were yielded per dog, each including the implant and the surrounding soft and hard peri-implant tissues. The biopsies were processed for ground sectioning or "fracture technique" and the sections produced were subjected to histological examination. The volume of the hard tissue that was occupied by clearly identified Bio-Oss particles was reduced between the 3- and 7-month intervals. This indicates that with time, Bio-Oss becomes integrated and subsequently replaced by newly formed bone. In other words, this xenograft fulfils the criteria of an osteoconductive material. It was also observed that 4 months after implant installation, the titanium/hard tissue interface at test and control sites exhibited, from both a quantitative and qualitative aspect, a similar degree of "osseointegration".  相似文献   

9.
PURPOSE: This retrospective study investigated the survival of dental implants placed in the maxilla after composite grafting of the sinus and an average of 55 months of loading. PATIENTS AND METHODS: Maxillary sinuses of 88 patients were grafted with autogenous cancellous bone combined with dense hydroxyapatite particles. After an average healing period of 3.4 months, hydroxyapatite-coated titanium endosseous implants were placed. A total of 388 implants were placed in grafted sinus floors, and 82 were placed in onlay grafted nonsinus position in the canine region. The implants were loaded with overdentures and fixed bridges 4 months (mean) after implantation, with a follow-up for a mean of 55 months. RESULTS: The cumulative implant survival was calculated according to the Kaplan-Meier method. Implant survival from the time of loading was 89% in full reconstructed cases and 90% in partially edentulous cases. The overall cumulative implant survival rate, including the loss in the surgical stage, was 82%. CONCLUSION: Implant loss in composite grafted maxillae after 70 months of follow-up was similar to loss in nongrafted maxillae.  相似文献   

10.
In order to achieve esthetically more satisfying results, it has been proposed to place ITI implants with their border between the rough and smooth surfaces below the level of the alveolar crest, thereby obtaining a submucosally located implant shoulder following healing. The aim of the present experimental study was to clinically and radiographically evaluate the tissue response to the placement of one-stage transmucosal implants with the border between the rough and the smooth surfaces sunk by 1 mm into a subcrestal location. 11 patients underwent comprehensive dental care including the placement of 2 implants of the ITI Dental Implant System in the same quadrant (test and control). Randomly assigned control implants were placed according to the manufacturer's instructions, i.e. the border between the rough titanium plasma-sprayed and the smooth polished surfaces precisely at the alveolar crest. At the test implant the apical border of the polished surface was placed approximately 1 mm below the alveolar crest. Probing bone levels were assessed at implant placement (baseline), 4 and 12 months later. Modified plaque and modified gingival indices were recorded at 1, 2, 3, 4 and 12 months. Clinical probing depth and "attachment" levels were measured at 4 and 12 months. All parameters were assessed at 6 sites around each implant. The mean for each implant was calculated and used for analysis. The Wilcoxon matched pairs signed rank test and the Student t-test were applied to detect differences over time and between the test and control implants. At baseline, a mean difference in probing bone level of -0.86 mm (SD 0.43 mm, p < 0.05) was found between test and control implants with the test implants being placed more deeply. Both test and control implants lost a significant amount of clinical bone height during the first 4 months (test 1.16 mm, p < 0.05; control 0.58 mm, p < 0.05). However, only the test implants significantly lost clinical bone height from 4-12 months (test 1.04 mm, p < 0.05; control 0.45 mm, p = 0.08). Overall, the test implants lost 2.26 mm and the control implants 1.02 mm of bone height during the first year of service. On the average, the test implants demonstrated a bone level of 0.38 mm lower than the controls at 12 months. Except for the modified gingival index at 4 months (mean difference 0.21, SD 0.19, p < 0.05), no clinical parameters yielded significant differences between test and control implants at any time. It is concluded that in addition to the crestal bone resorption occurring at implants placed under standard conditions, the bone adjacent to the polished surface of more deeply placed ITI implants is also lost over time. From a biological point of view, the placement of the border between the rough and the smooth surfaces into a subcrestal location should not be recommended.  相似文献   

11.
RA Horowitz 《Canadian Metallurgical Quarterly》1997,18(5):441-7, 450-2; quiz 454
The placement of endosseous dental implants is often hampered by the loss of alveolar bone. In the posterior maxilla, the presence of the maxillary sinus and less-dense bone present additional obstacles to successful implant placement. Existing methods of subantral augmentation require extensive surgical manipulation, often including a second surgical site for harvesting autogenous bone. The development of surgical osteotomes has facilitated the placement of implants in areas of minimal alveolar bone height in the posterior maxilla. This article describes the osteotome technique for sinus augmentation at the time of implant placement and presents a short-term evaluation of 34 implants placed in 18 patients.  相似文献   

12.
The purpose of this study was to determine which treatment of a large osseous defect adjacent to an endosseous dental implant would produce the greatest regeneration of bone and degree of osseointegration: barrier membrane therapy plus demineralized freeze-dried bone allograft (DFDBA), membrane therapy alone, or no treatment. The current study histologically assessed changes in bone within the healed peri-implant osseous defect. In a split-mouth design, 6 implants were placed in edentulous mandibular ridges of 10 mongrel dogs after preparation of 6 cylindrical mid-crestal defects, 5 mm in depth, and 9.525 mm in diameter. An implant site was then prepared in the center of each defect to a depth of 5 mm beyond the apical extent of the defect. One mandibular quadrant received three commercially pure titanium (Ti) screw implants (3.75 x 10 mm), while the contralateral side received three hydroxyapatite (HA) coated root-form implants (3.3 x 10 mm). Consequently, the coronal 5 mm of each implant was surrounded by a circumferential defect approximately 3 mm wide and 5 mm deep. The three dental implants in each quadrant received either DFDBA (canine source) and an expanded polytetrafluoroethylene membrane (ePTFE), ePTFE membrane alone, or no treatment which served as the control. Clinically, the greatest increase in ridge height and width was seen with DFDBA/ePTFE. Histologically, statistically significant differences in defect osseointegration were seen between treatment groups (P < 0.0001: DFDBA/ePTFE > ePTFE alone > control). HA-coated implants had significantly greater osseointegration within the defect than Ti implants (P < 0.0001). Average trabeculation of newly formed bone in the defect after healing was significantly greater for HA-coated implants than for titanium (P < 0.0001), while the effect on trabeculation between treatments was not significantly different (P = 0.14). Finally, there were significantly less residual allograft particles in defect areas adjacent to HA-coated implants than Ti implants (P = 0.0355). The use of HA-coated implants in large size defects with DFDBA and ePTFE membranes produced significantly more osseointegration histologically than other treatment options and more than Ti implants with the same treatment combinations. The results of this study indicate that, although the implants appeared osseointegrated clinically after 4 months of healing, histologic data suggest that selection of both the implant type and the treatment modality is important in obtaining optimum osseointegration in large size defects.  相似文献   

13.
The present paper describes 18 consecutively-treated non-human primates (Macaca mulatta) as part of a balanced block design study of 36 animals to examine osseointegration in root- and plate-form implants prepared by atraumatic preparation of bone. Clinical measurements around selected teeth and digital radiology were utilized to monitor periodontal disease and bone deposition around the unloaded implants. Once a month scaling procedures were utilized as a means of preventing further advance of periodontal disease. Results indicate that once-monthly regimen of scaling and root planing can prevent attachment loss of natural teeth and will not interfere with the healing of either type of implant; once-monthly scalings produce significant reduction in redness (P < .05) and reduced probing depths (P = .01). A second finding is that both root and blade implants show radiographic evidence of osseointegration in this primate model. The quantitative analysis demonstrates bone gain is not stabilized until 6 months after healing. The data may indicate that occlusal loading of mandibular implants at 3 months may be premature.  相似文献   

14.
The aim of this study was to evaluate guided bone regeneration (GBR) around dental implants placed in atrophic alveolar ridges using an experimental, nonporous bioresorbable barrier. In 8 Rhesus monkeys, the maxillary canines and lateral incisors were extracted bilaterally and the remaining alveoli were reduced to create atrophic ridges. After a healing period of 3 months, soft tissue expansion was performed using a subperiosteal tissue expander. After 1 month of tissue expansion, and IMZ implant was placed in the atrophic ridge on each side in such a way that its coronal 4 mm to 5 mm remained circumferentially exposed above the bone level. The test implants were covered with a bioresorbable barrier made of poly (D,L-lactid-co-trimethylencarbonate) in a 70/30 ratio, whereas the control implants were covered with a nonresorbable expanded polytetrafluoroethylene (e-PTFE) barrier. The e-PTFE barriers were stabilized with titanium minipins while the bioresorbable barriers were analogously fixed using bioresorbable minipins made of poly (L-lactid-co-D,L-lactid) 70/30. Clinical healing progressed uneventfully in both groups and no soft tissue dehiscences occurred. Histometric and histomorphometric analyses were performed 5 months post surgery. Both test and control implants exhibited direct bone-to-implant contact to variable extents. The mean direct mineralized bone-to-implant contact length fraction was 32% of the total implant length in the test sites and 58% in the control sites. Control sites exhibited significantly greater bone fill compared to the experimental sites (P < 0.001). Histologic observations of test specimens demonstrated a moderate inflammatory reaction related to the degradation and resorption products of the barrier. In conclusion, the nonresorbable e-PTFE GBR barrier was found to be superior to the bioresorbable barriers tested in the present investigation.  相似文献   

15.
A new design of single tooth implant (AstraTech, Molndal Sweden) featuring a microthreaded conical neck and TiO blast surface was evaluated clinically and radiographically after 2 years in function. Fifteen patients (age range 16 to 48) with missing maxillary anterior teeth (6 central incisors, 8 laterals, 1 bicuspid) had 4, 13 mm and 11, 15 mm implants placed under local anaesthesia and left for a period of 6 months before exposure and abutment connection/crown fabrication. All patients were seen at 4 to 6 monthly intervals for hygienist maintenance. Radiographs using Rinn holders and a long cone technique were taken at the crown insertion and after 1 year (14 subjects) and 2 years (12 subjects). All implants were successfully integrated at stage 2, and no implants have been lost. The internal conical seal design of the abutment/implant interface facilitated connection and there were no cases of abutment screw loosening. No soft tissue problems were observed, and the gingival morphology/health was well maintained. One crown was recemented after 18 months in function, and 1 crown was replaced because of a fracture to the porcelain incisal edge. At crown insertion, the mean bone level was 0.46 to 0.48 mm apical to the top of the implant and there were no statistically significant changes in the bone level over the 2 years of the study. In conclusion, the single tooth Astra implants were highly successful and bone changes within the first 2 years of function were comparable with other systems reporting high long-term success rates.  相似文献   

16.
The Endopore implant provides a novel method for reliable fixation of endosseous dental implants within the bone. Through the use of a porous-surfaced zone formed by sintering Ti alloy particles of the appropriate size and under appropriate processing conditions to a sold Ti alloy core of desired shape (tapered truncated cone), an implant is now available that can be placed using a relatively simple surgical procedure using either surgical burs or hand osteotomes. Of even greater value is the suitability of this implant design for treatment of cases that because of minimal bone height cannot be treated routinely using other currently-available implants. The high success rates experienced with significantly shorter implant lengths compared with other designs indicate the appropriateness of this system for difficult-to-treat cases. The Endopore system represents the next generation of endosseous dental implants characterized by uncomplicated and reliable treatment for a wider range of dentally-compromised patients. Its history is founded on extensive and fully-documented research at the human preclinical stage as well as human use experiences. The results during the past nine years have confirmed the high expectations that those early studies suggested.  相似文献   

17.
The present study examined the influence of bone quality on the transmission of occlusal forces for endosseous dental implants. Employing the finite element method, the study modeled a 3.75 x 10-mm threaded implant placed in a 12 x 11 x 8-mm section of bone. By varying the elastic parameters assigned to the bone elements, four bone quality categories were established. A load of 100 N was applied at the occlusal surface of the restoration at a 30 degrees angle to the vertical axis of the implant. Maximum von Mises stress concentrations (sigma Emax) were observed to be located in the marginal bone at the coronal aspect of the implant fixture in all four cases. Values of sigma Emax were 13.7 MPa for type 1 bone, 15.8 MPa for type 2 bone, 20.1 MPa for type 3 bone, and 26.5 MPa for type 4 bone. Magnitude of the stresses in bone was strongly correlated (r = 0.997) with computed displacement of the implant system. This analysis predicts that placement of implants in bone with greater thickness of the cortical shell and greater density of the core will result in less micromovement and reduced stress concentration, thereby increasing the likelihood of fixture stabilization and tissue integration.  相似文献   

18.
This pilot study analyzed the bone reactions to early loaded titanium plasma-sprayed implants. A total of 24 titanium plasma-sprayed implants (12 in the maxilla and 12 in the mandible) (Primary Healing Implant, Legnano) were inserted into four Macaca fascicularis monkeys with instruments specially designed to obtain a precise fit of the implant in the bone socket. A metal superstructure was cemented into 10 mandibular and 10 maxillary implants 15 days after implant insertion. The four remaining implants were used as controls. Eight months after implant placement, a block section was carried out, the defect was filled with nonresorbable hydroxyapatite, and all 24 implants were retrieved. The implants were treated to obtain thin ground sections that were examined under normal and polarized light. Histologic analysis showed that bone was observed around the implant surface in all implants. Morphometric analysis demonstrated that bone lined 67.2% (SD = 3.1%) of the maxillary implant surface, and 80.71% (SD = 4.6%) of the mandibular implant surface. No differences were found in the percentage of bone-implant contact in the control implants. In the loaded implants, however, the bone around the implants had a more compact appearance. The study demonstrated that it is possible to obtain a high percentage of bone-implant contact in early loaded titanium plasma-sprayed implants.  相似文献   

19.
Because of the frequent lack of bone in the posterior maxilla, sinus augmentation has become a commonly practiced treatment modality. Many different materials have been used for augmenting the sinus, and the ideal graft is yet to be found. The present article reports the results of sinuses grafted with calcium sulfate in 2 patients. Bone biopsies were harvested 9 months after the augmentation procedure. In the first patient, 3 titanium threaded-cylinder implants were placed in the grafted area after 9 months, while in the second, 1 acid-etched, screw-shaped titanium implant was placed simultaneously with the graft. Light microscopic evaluation revealed new bone formation with ongoing remodeling and progressive lamellar maturation in the specimens. No remnants of the alloplastic material were detectable in any section, either within the bone or in the medullary tissue. When reevaluated at the uncovering procedure, the implants were radiographically and clinically judged to be osseointegrated. These observations suggest that, when used in the appropriate form and with the proper technique, calcium sulfate is a promising graft material for sinus augmentation, producing adequate quantity and quality of new bone for implant placement.  相似文献   

20.
This report outlines the experimental, surgical, and prosthodontic protocols for a prospective clinical trial using the Endopore dental implant to replace single maxillary teeth. Twenty patients (10 male, 10 female) ranging in age from 30 to 60 years each received one implant (mean length 10.1 mm), which, after an initial healing period of 4 months, was restored with a single crown. Records collected included radiographs, Periotest mobility measurements, supragingival Plaque Index, and an assessment of peri-implant soft tissue health using pocket probing depths, sulcular bleeding following probing, and probing attachment levels. Radiographs were exposed at predetermined intervals following crown placement (1 and 6 months, and then yearly) in a standardized procedure using a specialized filmholder that attaches to each implant after removal of the crown. At the time of this preliminary report, all of the 20 implants placed had been uncovered and were in function; 16 of the implants had been in function for 6 months or more, 14 had passed 1 year of function, and 3 had passed the 2-year function point. There have been no failures to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号