首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the expression of topoisomerase I and topoisomerase II in primary lung cancer specimens at mRNA level, we carried out Northern blot analysis. As for topoisomerase I expression, there was no remarkable difference between lung cancer specimens and non-cancerous lung tissues. On the other hand, we could detect topoisomerase II mRNA in almost all lung cancer specimens, but not in non-cancerous tissues. By Southern blot analysis, we could not detect large deletion nor rearrangement in DNA level. These results suggest that the expression of topoisomerase II is highly increased in lung cancer at mRNA level and drugs against topoisomerase II might be more tumor-specific than those against topoisomerase I.  相似文献   

2.
The treatment of cancer with alkylating drugs or topoisomerase II inhibitors can be responsible for the development of myelodysplastic syndromes and acute myelogenous leukemia. Alkylating agents such as melphalan and cisplatinum mainly produce damages at chromosomes 5 and 7 whereas topoisomerase II inhibitors-induced lesions essentially affect chromosomes 11 and 21. Rearrangements of the MLL gene at band 11q23 are frequently observed in human de novo myeloid and lymphoid leukemia as well as in leukemia or myelodysplasia secondary to therapy with drugs targetting topoisomerase II such as the epipodophyllotoxins. A relationship between the treatment with etoposide on teniposide and the development of translocations of the MLL gene has been clearly evidenced. The potential molecular basis of the chromosomal rearrangements implicating topoisomerase II and its inhibitors are discussed. The chemical structure of the inhibitors, their mechanism of action and the genes targetted by these drugs are presented. DNA cleavages induced directly by topoisomerase II inhibitors or by the drug induced apoptotic cellular response are responsible for nonrandom chromosomal aberrations and contribute to leukemogenesis.  相似文献   

3.
The nuclear enzymes DNA topoisomerases I and II appeared as cellular targets for several antitumor drugs: campthotecin derivatives interacting with topoisomerase I, and actinomycin D, anthracycline derivatives, elliptinium acetate, mitoxantrone, epipodophyllotoxine derivatives, amsacrine and a new olivacine derivative, NSC-6596871 (S 16020-2), which interact with topoisomerase II. The functions of these enzymes are numerous and important since they are critical for DNA functions and cell survival. Despite the fact that they share the same target, topoisomerase II inhibitors have different mechanisms of action. Two principle types of induced alterations are involved in cellular resistance to topoisomerase II drugs: qualitative or quantitative alteration of the enzyme and/or increased drug efflux due to overexpression of P-glycoprotein. S 16020-2, a new olivacine derivative with a high antitumor activity against solid tumors, shows a potent cytotoxic effect against tumor cells expressing P-glycoprotein. This observation suggests that the comprehension of the respective effects of topoisomerase inhibitors and the precise knowledge of their mechanisms of resistance would improve the use of this therapeutic class in the clinic within rational chemotherapeutic combinations.  相似文献   

4.
Podophyllin-containing materials have been used as folk medicines for centuries. In the 1950s, scientists began a search to identify a more effective podophyllotoxin derivative. These efforts eventually resulted in the development of a new class of antineoplastic agents which target the DNA unwinding enzyme, topoisomerase II. The history of the development of one of the first identified topoisomerase II inhibitors, etoposide, is reviewed in this paper. Critical developments in etoposide's mechanism of action, pharmacology and administration schedule are summarised. The clinical benefits of the recently marketed etoposide prodrug, etoposide phosphate (Etopophos) are also detailed. The current status of other clinically approved anticancer agents which target topoisomerase II is briefly reviewed.  相似文献   

5.
Topoisomerase II catalyzes the passage of one DNA helix through another via a transient double-stranded break. The essential nature of this enzyme in cell proliferation and its mechanism of action make it an ideal target for cytotoxic agents. Saccharomyces cerevisiae topoisomerase II has been frequently used as a model for testing potential inhibitors of eukaryotic topoisomerase II as antitumor agents. The standard in vivo method of estimating the sensitivity of S. cerevisiae to the antitopoisomerase drugs is via inhibition or kill curves which rely on viable-cell counts and is labor intensive. We present an alternative to this, a high-throughput in vivo screen. This method makes use of a drug-permeable S. cerevisiae strain lacking endogenous topoisomerase II, which is modified to express either human topoisomerase IIalpha or IIbeta or S. cerevisiae topoisomerase II carried on plasmids. Each modified strain expresses a full-length topoisomerase II enzyme, as opposed to the more commonly used temperature-sensitive S. cerevisiae mutant expressing yeast or yeast/human hybrid enzymes. A comparison of this new method with a plating-and-counting method gave similar drug sensitivity results, with increased accuracy and reduced manual input for the new method. The information generated has highlighted the sensitivities of different topoisomerase II enzymes and isoenzymes to several different classes of topoisomerase II inhibitor.  相似文献   

6.
Mammalian cells contain two distinct types of topoisomerases. They have been mechanistically classified into a type I (topo I) and type II (topo II) enzyme. Anticancer drugs which target topo I include camptothecin, irinotecan, topotecan, and 9-aminocamptothecin. Anticancer drugs which target topo II include etoposide, mitoxantrone, teniposide, and doxorubicin. Much experimental work has indicated that cells with high topoisomerase are drug sensitive, and cells with low topoisomerase are drug resistant. These data suggest that patients whose tumors have abundant topoisomerase might be predicted to respond to topo targeted anticancer drugs. In order to test this hypothesis, immunohistochemical stains have been developed which can recognize the topoisomerases in formalin-fixed, paraffin-embedded, human tissue sections. This may make it feasible to correlate topoisomerase expression in human cancers with clinical response to chemotherapy.  相似文献   

7.
Camptothecins are a new class of anticancer drugs that target DNA topoisomerase I; current efforts are directed toward elucidating optimal combinations of these drugs with other antineoplastic agents. A rationale for the use of sequential therapy involving the combination of camptothecins with topoisomerase II-targeting drugs, such as etoposide, has arisen from observations of increased topoisomerase II protein levels in cell lines resistant to camptothecin. In an effort to understand potential mechanisms of resistance to this strategy, we developed a U-937 cell subline, denoted RERC, that is capable of surviving exposure to sequential topoisomerase poisoning. The RERC cells are 200-fold resistant to camptothecin, 8-fold resistant to etoposide, and 10-fold hypersensitive to cisplatin compared to the parental U-937 cells. Biochemical analyses indicate that the resistant phenotype involves alterations in both topoisomerase I and topoisomerase IIalpha. Topoisomerase I catalytic activity in the resistant cells is similar to that of the parental line but is resistant to camptothecin. Moreover, the resistant cells express a single mRNA species of topoisomerase I that codes for a mutation in codon 533. In addition, topoisomerase IIalpha protein levels are decreased 10-fold in the resistant line, coincident with a two-fold decrease in the expression of topoisomerase IIalpha mRNA. Collectively, these results indicate that resistance to sequential topoisomerase poisoning may involve a reduction in total cellular topoisomerase activity.  相似文献   

8.
Topoisomerase II is the cytotoxic target for a number of clinically relevant antitumor drugs. Berberrubine, a protoberberine alkaloid which exhibits antitumor activity in animal models, has been identified as a specific poison of topoisomerase II in vitro. Topoisomerase II-mediated DNA cleavage assays showed that berberrubine poisons the enzyme by stabilizing topoisomerase II-DNA cleavable complexes. Subsequent proteinase K treatments revealed that berberrubine-induced DNA cleavage was generated solely by topoisomerase II. Topoisomerase II-mediated DNA religation with elevated temperature revealed a substantial reduction in DNA cleavage induced by berberrubine, to the extent comparable to that of other prototypical topoisomerase II poison, etoposide, suggesting that DNA cleavage involves stabilization of the reversible enzyme-DNA cleavable complex. However, the step at which berberrubine induces cleavable complex may differ from that of etoposide as revealed by the difference in the formation of the intermediate product, nicked DNA. This suggests that berberrubine's primary mode of linear formation may involve trapping nicked molecules, formed at transition from linear to covalently closed circular DNA. Unwinding of the duplex DNA by berberrubine is consistent with an intercalative binding mode for this compound. In addition to the ability to induce the cleavable complex mediated with topoisomerase II, berberrubine at high concentrations was shown to specifically inhibit topoisomerase II catalytic activity. Berberrubine, however, did not inhibit topoisomerase I at concentrations up to 240 microM. Cleavage sites induced by topoisomerase II in the presence of berberrubine and etoposide were mapped in DNA. Berberrubine induces DNA cleavage in a site-specific and concentration-dependent manner. Comparison of the cleavage pattern of berberrubine with that of etoposide revealed that they share many common sites of cleavage. Taken together, these results indicate that berberrubine represents a new class of antitumor agent which exhibits the topoisomerase II poison activity as well as catalytic inhibition activity and may have a potential clinical value in cancer treatment.  相似文献   

9.
Topoisomerase I-directed agents are now in Phase I and II clinical trials and show great promise as potentially important agents for cancer chemotherapy. Because of their mechanism of action they may also be potential mutagens; however, their mutagenicity and oncogenicity still remain to be elucidated. We have previously shown that VP-16, a topoisomerase II-directed agent, induces sister chromatid exchanges and gene deletions and/or rearrangements in vitro. These observations may account for both the cytotoxic effects of topoisomerase II-directed agents as well as their recently reported leukemonogenic potential. To evaluate the potential mutagenicity of topoisomerase I-directed drugs, we measured mutant frequencies at the hypoxanthine phosphoribosyl transferase locus of the V79 Chinese hamster fibroblast cell line treated with the topoisomerase I-directed drugs camptothecin and topotecan, and compared these results with mutant frequency obtained with the topoisomerase II-directed drug VP-16 and an alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). All of these drugs showed a dose-dependent increase in mutant frequency at the hypoxanthine phosphoribosyl transferase locus. At a dose producing approximately 30% survival, VP-16, camptothecin, and topotecan induced mutant frequencies of 11.3 x 10(-6), 4.9 x 10(-6), and 2.7 x 10(-6), respectively, whereas the spontaneous mutant frequency at this locus was 0.3 x 10(-6). In contrast, the alkylating agent MNNG produced a mutant frequency of 562 x 10(-6) at 26% survival dose. The molar mutagenic potencies, expressed as mutant frequency/mol-h exposure, for VP-16, camptothecin, topotecan, and MNNG at approximately 30% survival dose were 0.9, 8.2, 2.3, and 56.8, respectively. On Southern blot analysis after EcoRI, PstI, or HindIII digestion, 6 of 12 independent thioguanine-resistant mutants induced by topotecan showed gene deletions or rearrangements. In contrast, five of five independent spontaneous mutants and six of six independent mutants induced by MNNG demonstrated the same restriction pattern as the parental V79 cells. These results indicate that the mutant frequency and the mutagenic potential of topoisomerase I and II active agents are quantitatively similar. The results further demonstrate that topoisomerase I and II active agents introduce mutations characterized by gene deletions and rearrangements, whereas spontaneous mutations and those induced by alkylating agents appeared to be more characteristically associated with point mutations. Thus, clinical use of the topoisomerase I and II active agents is expected to cause similar mutagenic effects that could potentially lead to secondary malignancies.  相似文献   

10.
Mutations in DNA topoisomerase II are often correlated with drug-resistance in tumor cell lines. Studies of topoisomerase II-mediated drug-resistance in various model systems, as well as the sequencing of such mutations from drug-resistant tumors, have shed light on the functional domains of topoisomerase II, on how it interacts with inhibitors, and on the different mechanisms by which cells avoid the toxic effects of many clinically important anti-tumor drugs.  相似文献   

11.
Previously we reported [20] that there is no correlation between the cytotoxic activity of four new structural analogs of the antitumor DNA intercalator 3-nitrobenzothiazolo[3,2-a]quinolinium chloride (NBQ-2) and their interaction with DNA. In the present study, we present evidence suggesting that the molecular basis for the anti-proliferative activity of these drugs is the inhibition of topoisomerase II. The NBQ-2 derivatives inhibited the relaxation of supercoiled DNA plasmid pRYG mediated by purified human topoisomerase II. Inhibition of the decatenation of kinetoplast DNA mediated by partially purified topoisomerase II extracted from the human histiocytic lymphoma U937 (a cell line previously shown to be sensitive to the drugs) was also caused by these drugs. The potency of the benzazolo[3,2-a]quinolinium drugs against topoisomerase II in vitro was the following: 7-(1-propenyl)-3-nitrobenzimidazolo[3,2-a]quinolinium chloride (NBQ-59) > 4-chlorobenzothiazolo[3,2-a]quinolinium chloride (NBQ-76) > 7-ethyl-3-nitrobenzimidazolo[3,2-a]quinolinium chloride (NBQ-48) > 7-benzyl-3-nitrobenzimidazolol[3,2-a]quinolinium chloride (NBQ-38). This rank of potency for topoisomerase II inhibition correlated very well with the cytotoxicity elicited by these drugs. Furthermore, significant levels of topoisomerase II/DNA cleavage complex induced by these drugs in vivo were detected when U937 cells were treated with NBQ-59 and NBQ-76 whereas NBQ-38 and NBQ-48 produced negligible amounts of the cleavage complex. Our results strongly suggest that topoisomerase II is the major cellular target of this family of compounds.  相似文献   

12.
We show herein that human DNA topoisomerase II beta is functional in yeast. It can complement a yeast temperature-sensitive mutation in topoisomerase II. The effect on human topoisomerase II beta of a number of topoisomerase II inhibitors was analysed in a yeast in vivo system and compared with that of human topoisomerase II alpha and wild-type yeast topoisomerase II. A drug permeable yeast strain (JN394 top2-4) was used to analyse the in vivo effects of known anti-topoisomerase II agents on human topoisomerase II beta transformants. A parallel analysis on human topoisomerase II alpha transformants provides the first in vivo analysis of the responses of yeast bearing the individual isoforms to these drugs. The strain was analysed at 35 degrees C, a non-permissive temperature at which only plasmid-borne topoisomerase II is active. A shuttle vector with either human topoisomerase II beta, human topoisomerase II alpha or yeast topoisomerase II under the control of a GAL1 promoter was used. The key findings were that amsacrine produced comparable levels of cell killing with both alpha and beta, whilst etoposide, doxorubicin and mitoxantrone produced higher degrees of cell killing with alpha than with beta or yeast topoisomerase II. Merbarone had the greatest effect on the yeast strain bearing plasmid-borne yeast topoisomerase II. Suramin, quercetin and genistein showed little cell killing in this system. This yeast in vivo system provides a powerful way to analyse the effects of anti-topoisomerase II agents on transformants bearing the individual human isoforms. This system also provides a means of analysing putative drug-resistance mutations in human topoisomerase II beta or to select for drug-resistance mutations in human topoisomerase II beta.  相似文献   

13.
One of the most serious possible consequences of cancer therapy is the development of a second cancer, especially leukemia. Several distinct subsets of therapy-related leukemia can be distinguished currently. These include classic therapy-related myeloid leukemia, leukemia that follows treatment with agents that inhibit topoisomerase II, acute lymphoblastic leukemia, and leukemias with 21q22 rearrangements or inv(16) or t(15;17). These types of leukemia are discussed in detail in this article.  相似文献   

14.
DNA topoisomerases, nuclear enzymes that regulate DNA topology, are recognized as the primary targets of effective anti-tumor drugs. These enzymes may also have a role in the repair of DNA damage induced by alkylating agents and platinum compounds; therefore, their expression may be a determinant of tumor response to chemotherapy. Our study was undertaken in an attempt to establish a correlation between the enzyme expression and response of ovarian cancer to cisplatin-based chemotherapy. The expression of topoisomerase I, II alpha and II beta genes was assessed by RNase protection assay in tumor specimens obtained from 37 untreated patients with advanced epithelial ovarian cancer at initial surgery and from 13 pre-treated patients at subsequent laparotomy. The expression levels were compared with those found in 5 specimens from benign ovarian tissue and 5 specimens from normal ovarian tissue. The expression levels in untreated patients were used to establish a correlation with response to high-dose cisplatin therapy. A significant intertumor variability of mRNA expression was noted for all the genes examined. However, a comparison of median values indicated a remarkable increase of expression in malignant tumors over benign or normal tissues only for topoisomerase II alpha. This change is not related to alterations or amplification of topoisomerase II alpha gene. Interestingly, a correlation was found between tumor response to chemotherapy and the expression level of the isoform alpha (but not of topoisomerase II beta and topoisomerase I). The observed correlation suggests a contribution of the enzyme in determining tumor sensitivity. Alternatively, increased expression levels of the alpha isoenzyme gene in responsive tumors might reflect higher fractions of proliferating tumor cells that may be more drug-sensitive than resting cells.  相似文献   

15.
Several clinically active anticancer drugs are known to interfere with DNA topoisomerase II activity. However, the importance of the individual alpha (170 kDa) and beta (180 kDa) isozymes as targets of topoisomerase II-active drugs is not clear. To address this question, human CCRF-CEM leukemia cells were incubated with bromodeoxyuridine, and either the nascent DNA or bulk DNA not undergoing replication was purified by immunoprecipitation with an anti-bromodeoxyuridine antibody. The topoisomerase II isozymes that coprecipitated with either the nascent DNA or bulk DNA were analyzed by Western blotting. The alpha isozyme formed complexes with nascent DNA in cells pretreated with either VM-26 or mitoxantrone, while the beta isozyme was only bound to bulk DNA. At moderately cytotoxic concentrations, VM-26 enhanced the binding of topoisomerase II alpha to nascent DNA at least 5.2-fold compared to bulk DNA. However, in VM-26 resistant CEM/VM-1 cells incubated with equitoxic concentrations of VM-26, topoisomerase II alpha complex formation with nascent DNA was decreased at least 5.5-fold compared to bulk DNA. Drug-induced binding of topoisomerase II beta with bulk DNA in CEM/VM-1 cells did not correlate with cytotoxicity. Collectively, these results indicate that the formation of VM-26 stabilized complexes of topoisomerase II alpha with nascent DNA are critical to the development of cytotoxicity, and that resistance of CEM/VM-1 cells to VM-26 is related to impaired formation of these complexes. The results also provide indirect evidence that topoisomerase II alpha is involved in DNA, replication.  相似文献   

16.
In this review the clinical pharmacokinetics of camptothecin topoisomerase I inhibitors, an important new class of anticancer drugs, is discussed. Two prototypes, topotecan and irinotecan, are currently marketed in many European countries and the USA for the treatment of patients with ovarian and colorectal cancer, respectively. Other camptothecin derivatives, including lurtotecan, 9-aminocamptothecin (9-AC) and 9-nitrocamptothecin (9-NC), are at different stages of clinical development. The common property of camptothecin analogues is their action against DNA topoisomerase I, but beyond this similarity the compounds differ widely in terms of antitumour efficacy, pharmacology, pharmacokinetics and metabolism. We review chemistry, mechanism of action, stability and bioanalysis of the camptothecins. Dosage and administration, status of clinical application, pharmacokinetics, pharmacodynamics and drug interactions are discussed.  相似文献   

17.
More than 35 candidate drugs have been under their clinical studies in Japan currently. These include antimetabolites, drugs originated from natural products, miscellaneous compounds and hormones. Since the time of appearance of cisplatin and taxol, we found the possibility to discover new active drugs against human solid cancers. Our recent clinical studies on topoisomerase inhibitors and microtubules inhibitors have also been proving the clinical usefulness of these drugs for cancer treatment. From now on, we have to think the drug development from ethical aspects, improving quality of life and prolonging the survival of the treated patients. For these purposes, we have to be careful to choose candidate drugs for their clinical trials.  相似文献   

18.
This review deals with the historical discovery of particularly important lignan derivatives used in cancer chemotherapy. From isolation of the naturally occurring podophyllotoxin, an inhibitor of microtubule assembly, to hemisynthesis of the clinically important anticancer drugs etoposide and teniposide, it will be demonstrated how the activities and the ability of this class of compounds to inhibit topoisomerase II were discovered by different research teams. By virtue of these discoveries, new hemisynthetic derivatives, with different mechanisms of action, are bringing improvements in the ability to treat cancer.  相似文献   

19.
DNA methylation is deregulated during oncogenesis. Since several major anti-cancer drugs act on topoisomerases, we investigated the effects of cytosine methylation on topoisomerase cleavage activities. Both topoisomerase I and II cleavage patterns were modified by CpG methylation in c-myc gene DNA fragments. Topoisomerase II changes, mainly cleavage reduction, occurred for methylation sites within 7 base pairs from the topoisomerase II breaks and were different for VM-26 and azatoxin. For topoisomerase I, cleavage enhancement as well as suppression were observed. Using synthetic methylated oligonucleotides, we show that hemimethylation is sufficient to alter topoisomerase I activity. Cytosine methylation on the scissile strand within the topoisomerase I consensus sequence had strong effects. Cleavage was stimulated by methylation at position -4 and was strongly inhibited by methylation at position -3 (with position -1 being the enzyme-linked nucleotide). This inhibitory effect was attributed to the presence of a methyl group in the major groove, since the transition uracil to thymine also inhibited cleavage. Altogether these results suggest an interaction of topoisomerase I with the DNA major grove at positions -3 and -4. In addition, DNA methylation may have profound effects on the activity of topoisomerases and may alter the distribution of cleavage sites produced by anticancer drugs in chromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号