首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated theoretically the entanglement creation through tunneling rate and fields in a four-level triple quantum dot molecule based on InAs/GaAs/AlGaAs heterostructure in both steady state and transient state. We demonstrate that the entanglement entropy among the QDM and its spontaneous emission fields can be controlled by coherent and incoherent pumping field and tunnel-coupled electronics levels. The results may provide some new possibilities for technological applications in solid-state quantum information science, quantum computing, teleportation, encryption, compression codec, and optoelectronics.  相似文献   

2.
采用水热法制备了钛基纳米管,利用双官能团物质2-巯基丙酸为连接剂,将CdS量子点沉积在纳米管表面,研究了2-巯基丙酸浓度对样品的物相、微观结构和光催化活性的影响。利用X射线衍射仪、透射电子显微镜、紫外可见分光度计和光催化反应仪对样品进行了表征。结果表明,CdS量子点成功沉积在纳米管表面,改变2-巯基丙酸浓度可以调节CdS量子点的沉积数量,随着CdS量子点在纳米管表面的沉积,样品不仅在紫外光区有吸收,在可见光区也出现吸收,其吸收边在540nm左右。CdS量子点的沉积提高了样品在可见光下的光催化活性,2-巯基丙酸浓度为0.7mol/L时制备的样品对甲基橙降解的光催化活性最好。  相似文献   

3.
InAs quantum dot superluminescent diodes with trench structure   总被引:1,自引:0,他引:1  
Using a trench structure, we have realized improved reliability for processing InAs quantum-dot-based J-shaped superluminescent diodes (SLDs) with shallow-etched waveguides. The observed drastic decrease of output power in shallow-etched-waveguide SLDs is recovered with the deep-etched waveguide. The output power increases with decreasing separation between the waveguide and the trench. The maximum output power of the SLDs with the trench structure exceeds 25 mW. The trench structure should help to achieve low production costs while retaining high reliability.  相似文献   

4.
W Hu  R Henderson  Y Zhang  G You  L Wei  Y Bai  J Wang  J Xu 《Nanotechnology》2012,23(37):375202
PbSe quantum dot light emitting diodes (QD-LEDs) of a multi-layer architecture are reported in the present work to exhibit high external quantum efficiencies. In these devices, a ligand replacement technique was employed to activate PbSe QDs, and ZnO nanoparticles were used for the electron transport layer. The emission wavelength of this solution processed device is QD size tunable over a broad spectral range, and an LED efficiency of 0.73% was measured at 1412?nm. Higher efficiencies at longer wavelengths are also inferred from spectral characterization.  相似文献   

5.
Images of a single-electron quantum dot were obtained in the Coulomb blockade regime at liquid He temperatures using a cooled scanning probe microscope (SPM). The charged SPM tip shifts the lowest energy level in the dot and creates a ring in the image corresponding to a peak in the Coulomb-blockade conductance. Fits to the line shape of the ring determine the tip-induced shift of the energy of the electron state in the dot. SPM manipulation of electrons in quantum dots promises to be useful in understanding, building, and manipulating circuits for quantum information processing.  相似文献   

6.
Recently, an ensemble of nuclear spins in a quantum dot have been proposed as a long-lived quantum memory. A quantum state of an electron spin in the dot can be faithfully transfered into nuclear spins through controlled hyperfine coupling. Here we study the decoherence of this memory due to nuclear spin dipolar coupling and inhomogeneous hyperfine interaction during the storage period. We calculated the maximum fidelity of writing, storing, and reading operations. Our results show that nuclear spin dynamics can severely limit the performance of the proposed device for quantum information processing and storage based on nuclear spins.  相似文献   

7.
It is shown that a bound electron state exists in a system of quantum waveguides laterally coupled via a small window and placed in a transverse electric field. A field-induced shift of the eigenvalue is estimated using a variational method.  相似文献   

8.
We show that in films of strongly coupled PbSe quantum dots multiple electron-hole pairs can be efficiently produced by absorption of a single photon (carrier multiplication). Moreover, in these films carrier multiplication leads to the generation of free, highly mobile charge carriers rather than excitons. Using the time-resolved microwave conductivity technique, we observed the production of more than three electron-hole pairs upon absorption of a single highly energetic photon (5.7E(g)). Free charge carriers produced via carrier multiplication are readily available for use in optoelectronic devices even without employing any complex donor/acceptor architecture or electric fields.  相似文献   

9.
Hong SK  Nam SW  Yeon KH 《Nanotechnology》2008,19(15):155402
We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.  相似文献   

10.
We present a study of the light extraction from CdSe/ZnS core/shell colloidal quantum dot thin films deposited on quantum well InGaN/GaN photonic crystal structures. The two-dimensional photonic crystal defined by nanoimprint lithography is used to efficiently extract the guided light modes originating from both the quantum dot thin films and the InGaN quantum wells. Far-field photoluminescence spectra are used to measure the extraction enhancement factor of the quantum dot emission (x1.4). Microphotoluminescence measurements show that the guided mode effective extraction lengths range between 70 and 180 microm, depending on the wavelength of light.  相似文献   

11.
We report bandlike transport in solution-deposited, CdSe QD thin-films with room temperature field-effect mobilities for electrons of 27 cm(2)/(V s). A concomitant shift and broadening in the QD solid optical absorption compared to that of dispersed samples is consistent with electron delocalization and measured electron mobilities. Annealing indium contacts allows for thermal diffusion and doping of the QD thin-films, shifting the Fermi energy, filling traps, and providing access to the bands. Temperature-dependent measurements show bandlike transport to 220 K on a SiO(2) gate insulator that is extended to 140 K by reducing the interface trap density using an Al(2)O(3)/SiO(2) gate insulator. The use of compact ligands and doping provides a pathway to high performance, solution-deposited QD electronics and optoelectronics.  相似文献   

12.
We report on photon-assisted tunneling (PAT) experiments in a carbon nanotube quantum dot using microwave frequencies between 20 and 60 GHz. In addition to the basic PAT effect, revealed by the appearance of two extra resonances in the current through the dot, we use PAT for spectroscopy of excited states. The experimental data are in good agreement with simulations.  相似文献   

13.
The photoluminescence lifetimes of Si quantum wires and dots have been previously calculated within a continuum model that takes into account the anisotropy of silicon band structure. Here, we present our calculations on the optical transitions in Si quantum wires modulated by a quantum dot. The geometrical parameters of the buldged wire are appropriate for porous Si and the ground state is localized. The photoluminescence lifetimes are calculated and compared with those of straight wires and dots. The magnitude of the lifetime is sensitive to the structural parameters of the nanostructures. Lifetimes varying from nanoseconds to milliseconds have been obtained. The results of the calculations provide insight to the optical properties of Si nanostructures.  相似文献   

14.
The photoluminescence lifetimes of Si quantum wires and dots have been previously calculated within a continuum model that takes into account the anisotropy of silicon band structure. Here, we present our calculations on the optical transitions in Si quantum wires modulated by a quantum dot. The geometrical parameters of the buldged wire are appropriate for porous Si and the ground state is localized. The photoluminescence lifetimes are calculated and compared with those of straight wires and dots. The magnitude of the lifetime is sensitive to the structural parameters of the nanostructures. Lifetimes varying from nanoseconds to milliseconds have been obtained. The results of the calculations provide insight to the optical properties of Si nanostructures.  相似文献   

15.
Near-field and time-resolved photoluminescence measurements show evidence of exciton localization in vertically and laterally coupled GaN quantum dots (QDs). The binding energies in multiple period QDs (MQDs) are observed to be stronger by more than six times compared to single period QDs (SQDs). Excitons in MQDs have a short (450 ps) lifetime and persist at room temperature, while SQDs exhibit extraordinarily long (>5 ns) lifetime at 10 K due to reduced spatial overlap of electron and hole wave functions in strained QDs.  相似文献   

16.
Zhang LM  Fogler MM 《Nano letters》2006,6(10):2206-2210
We analyze electrostatic interaction between a sharp conducting tip and a thin one-dimensional wire, e.g., a carbon nanotube, in a scanned gate microscopy (SGM) experiment. The problem is analytically tractable if the wire resides on a thin dielectric substrate above a metallic backgate. The characteristic spatial scale of the electrostatic coupling to the tip is equal to its height above the substrate. Numerical simulations indicate that imaging of individual electrons by SGM is possible once the mean electron separation exceeds this scale (typically, a few tens of nm). Differences between weakly and strongly invasive SGM regimes are pointed out.  相似文献   

17.
Li JJ  Zhu KD 《Nanotechnology》2011,22(5):055202
Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.  相似文献   

18.
The time evolution of a pulse-excited charge qubit in a semiconductor double quantum dot is investigated. All-electrical initialization and coherent gate control of the system are achieved, and coherent charge oscillation is observed through the transport measurements. The oscillation frequency and decoherence time T/sub 2/ are estimated by fitting the transport data with a simple model. Possible decoherence mechanisms in a charge qubit system are pointed out and discussed in detail.  相似文献   

19.
Ren Q  Lu J  Tan HH  Wu S  Sun L  Zhou W  Xie W  Sun Z  Zhu Y  Jagadish C  Shen SC  Chen Z 《Nano letters》2012,12(7):3455-3459
We demonstrate the spin selective coupling of the exciton state with cavity mode in a single quantum dot (QD)-micropillar cavity system. By tuning an external magnetic field, each spin polarized exciton state can be selectively coupled with the cavity mode due to the Zeeman effect. A significant enhancement of spontaneous emission rate of each spin state is achieved, giving rise to a tunable circular polarization degree from -90% to 93%. A four-level rate equation model is developed, and it agrees well with our experimental data. In addition, the coupling between photon mode and each exciton spin state is also achieved by varying temperature, demonstrating the full manipulation over the spin states in the QD-cavity system. Our results pave the way for the realization of future quantum light sources and the quantum information processing applications.  相似文献   

20.
Interband transitions in a narrow-gap InSb cylindrical quantum dot (QD) have been theoretically studied in the regime of strong dimensional quantization with allowance for a nonparabolic dispersion of electrons and light holes. The corresponding absorption coefficients and threshold frequencies for a QD array are calculated within the framework of a two-band Kane model for electrons and light holes and a parabolic dispersion law for heavy holes. These threshold frequencies fall in the IR range. Quantitative calculations are performed using the recent data of Moiseev et al. [1] on the growth of InSb quantum dots by liquid phase epitaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号