首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We describe the linear and nonlinear optical transfer characteristics of a multi-resonance device consisting of two optical ring resonators coupled one to the other and to an optical waveguide. The propagation effects displayed by the device are compared with those of a sequence of fundamental ring resonators coupled to a waveguide.  相似文献   

2.
We have demonstrated the application of broadband absorption spectroscopy in a liquid-core optical ring resonator. An initial proof of concept of the broadband liquid-core optical ring resonator (BLCORR) was constructed using a thinned-wall, 250-μm-inner-diameter fused silica capillary, tapered multimode optical fibers for input and output coupling, and a light-emitting diode (LED) source. When compared with standard cuvette measurements, an apparent path length as high as 5 cm was observed for methylene blue (MB). MB is a cationic dye that exhibits strong surface interaction with bare silica. Bromothymol blue (BTB), on the other hand, has a similar absorbance spectrum but does not share this same surface activity. On comparing these two dyes, the apparent path length for MB was found to reach more than 50 times that of BTB, confirming the expectation that the sensing region being probed is largely within the evanescent field at the inner surface of the capillary. The BLCORR may also inherit, from attenuated total reflection (ATR) spectroscopy, the ability to analyze highly concentrated chromophores. Concentrations of BTB as high as 10(-2) and 10(-3) M were easily distinguished from each other at the λ(max) in the BLCORR, whereas this was not the case in a 4-mm cuvette cell. Our presented device employs commercially available materials and could incorporate well into microfluidic systems. These benefits, along with the demonstrated ability to take enhanced surface absorbance measurements in a capillary, give the BLCORR potential in a variety of applications.  相似文献   

3.
Suter JD  White IM  Zhu H  Fan X 《Applied optics》2007,46(3):389-396
The liquid core optical ring resonator (LCORR) has recently shown promise as a high-sensitivity label-free lab-on-a-chip biological-chemical sensor. We investigate experimentally and theoretically the temperature dependence of the LCORR to establish a noise baseline, which will enable us to implement a temperature stabilization mechanism to reduce the thermally induced noise and to improve the sensor detection limit. Our studies involve analysis of the thermo-optic and thermomechanical effects of fused silica and aluminosilicate glass as they impact LCORR performance. Both thick-walled and thin-walled LCORRs are investigated to elucidate the contribution of water in the core to the thermal response of the LCORRs. Theoretical calculations based on Mie theory are used to verify the experimental observations.  相似文献   

4.
Tejerina MR  Torchia GA 《Applied optics》2011,50(20):3449-3454
In this work, we present an alternative approach to angular velocity optical sensing based on two-ring resonators. This configuration admits the use of a standard laser diode source (0.1 nm, 10,000 MHz, FWHM) reaching higher sensitivities when narrow spectral laser sources (1 MHz, FWHM) are used. We compare this configuration with the standard single-ring resonator angular rate sensor (SRARS), which must use a narrow laser at input. Finally, we conclude that the sensitivity of this new approach can also be enhanced by coupling high-power broadband laser sources in a large range (from 1°/h to 10,000°/h), reaching performance similar to that of a standard SRARS configuration.  相似文献   

5.
We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.  相似文献   

6.
Lin N  Jiang L  Wang S  Xiao H  Lu Y  Tsai H 《Applied optics》2011,50(33):6254-6260
This study proposes a thermal sensor based on whispering gallery modes (WGMs) in a polymer core optical ring resonator (PCORR). The thermal sensitivity and detection limit (i.e., the temperature resolution) for WGMs of various orders and polarizations are theoretically studied as a function of the ring wall thickness. The results show that the temperature detection limits can be as low as 4×10(-5) and 6×10(-6) K for laser linewidths of 2 and 0.3 MHz, respectively. The ultrahigh temperature resolution makes the PCORR a very promising platform for temperature measurement. The analysis also shows that the WGM of a lower order has better thermal sensing performance and a thinner optimal thickness of the ring resonator.  相似文献   

7.
The optimum filtration of pulsed microwave signals by a multiband active spin-wave ring resonator has been studied for the first time. The ring resonator, which comprises a spin-wave delay line based on a ferromagnetic single crystal film of yttrium iron garnet with a microwave amplifier in the feedback chain, possesses a comblike amplitude-frequency characteristic with a large number of pass bands. It is established that the best filtration of a periodic train of rectangular microwave pulses is achieved provided that harmonics of the signal coincide with the positions of the resonator pass bands. Thus, an active spin-wave ring resonator can be used as the optimum filter for periodic pulsed microwave signals.  相似文献   

8.
We have studied an interference switch based on an oversized H-plane rectangular waveguide T-junction. Conditions necessary for effective operation of the switch as an energy extractor are evaluated. Microwave pulses of 3.5-ns duration with 2.8-MW power at a gain of 17.5 dB have been obtained using a prototype microwave compressor for the 3-cm waveband with a 72 × 34 mm2 waveguide resonator and a 58 × 25 mm2 waveguide switch. It is shown that, using the proposed switch, it is possible to obtain RF pulses with a power of up to ~0.1 GW in the 3-cm band and ~1 GW in the 10-cm band.  相似文献   

9.
Lin N  Jiang L  Wang S  Xiao H  Lu Y  Tsai HL 《Applied optics》2011,50(20):3615-3621
This study performs a detailed theoretical analysis of refractive index (RI) sensors based on whispering gallery modes (WGMs) in liquid core optical ring resonators (LCORRs). Both TE- and TM-polarized WGMs of various orders are considered. The analysis shows that WGMs of higher orders need thicker walls to achieve a near-zero thermal drift, but WGMs of different orders exhibit a similar RI sensing performance at the thermostable wall thicknesses. The RI detection limit is very low at the thermostable thickness. The theoretical predications should provide a general guidance in the development of LCORR-based thermostable RI sensors.  相似文献   

10.
11.
A 1?×?4 optical splitter (OS) is proposed for TE modes based on a self-collimation (SC) effect ring resonator (SCRR) in an air-hole type silicon photonic crystal. A 1?×?4 OS consists of four beam splitters formed by varying the radii of the air holes. Utilizing multiple-beam interference theory, the theoretical transmission spectra at each port in the OS were analyzed. By forming four splitters in a SCRR properly, self-collimation light can come out from four ports with the light-intensity ratio we set. OSs were investigated using the two-dimensional finite-difference time-domain (FDTD) simulation technique. The simulation results have good agreement with the theoretical prediction. Because of its small dimensions, whole silicon material, and air-hole type, this structure may have an important role in photonic integrated circuits.  相似文献   

12.
13.
Hah D  Bordelon J  Zhang D 《Applied optics》2011,50(22):4320-4327
A new type of optical filter based on mechanical tuning and a microring resonator is proposed. The proposed filter is expected to consume much less standing power compared to the conventional thermo-optic and carrier-injection tunable filters. In this work, two methods are used to prove the concept of the proposed device: (1) the analytical method and (2) the finite-difference time-domain method. The dependence of the filter characteristics on some of the device parameters is studied as well.  相似文献   

14.
Based on photonic crystal ring resonators and nonlinear Kerr effect in this paper, we proposed a 2*4 all optical decoder switch. Our proposed structure has two logic input ports and one bias input port. This decoder switch has four output ports. Via these two logic input ports, we control the bias signal to transfer toward which output port. We employed numerical methods such as plane wave expansion and finite difference time domain methods for analyzing the proposed structure.  相似文献   

15.
Following recent findings on metamaterials, a miniaturized microstrip patch antenna loaded with a complementary split ring resonator (CSRR) was investigated for multiband operation. The proposed structure has a CSRR loaded in the base of the antenna to improve its performance and to make it a metamaterial. Metamaterials exhibit qualitatively new electromagnetic response functions that cannot be found in nature. The CSRR-loaded base allows simultaneous operation over several frequencies. Here, a total of seven bands were achieved by loading the patch antenna with the CSRR. The seven bands were centered around frequencies of 4.33 GHz, 5.29 GHz, 6.256 GHz, 7.066 GHz, 7.846 GHz, 8.86 GHz, and 9.75 GHz. Design results were obtained by using a high-frequency structure simulator that is used for simulating microwave passive components.  相似文献   

16.
We propose a design for an optical resonator suited to using large-bore active media. The resonator consists of a pair of waxicons, so we call it a "wwaxicon optical resonator." The resonator is considered a conventional (solid) resonator surrounded by coaxial annular resonators. A numerical simulation of the resonator designed for use in a commercial CO2 laser is performed. It is found that parasitic oscillation modes can be suppressed by the use of an spatial-frequency filter. The resonator exhibits oscillation in the TEM*01 transverse mode and produces twice as much output power as a sevenfold multipass stable optical resonator.  相似文献   

17.
Free-space optical cross-connect switch by use of electroholography   总被引:3,自引:0,他引:3  
An electrically controlled holographic switch is proposed as a building block for a free-space optical interconnection network. The switch is based on the voltage-controlled photorefractive effect in KLTN crystals at the paraelectric phase. It is built of electrically controlled Bragg gratings stored in the volume of the crystal. A compact switch that connects four high-speed fiber-optic communication channels with high efficiency is demonstrated experimentally. The switch performance is investigated and optimized. This switch is extremely attractive for cascaded switching arrays such as those found in multistage interconnect networks.  相似文献   

18.
Phase-noise measurements are presented for a microwave oscillator whose frequency is stabilized by a whispering gallery mode sapphire ring resonator with Q of 2x10(5). The nature of the mode, which involves little metallic conduction, allows nearly full use of the very low dielectric loss in sapphire. Several mode families have been identified with good agreement with calculated frequency predictions. Waveguide coupling parameters have been characterized for the principal (lowest frequency) mode family, for n=5 to n =10 full waves around the perimeter. For a 5-cm wheel resonator in a 7.6-cm container, Q-values of above 10(5) were found at room temperature for all of the modes in this sequence. Coupling Q-values for the same modes ranged from 10(4) (n =5) to 10(5) (n=10) for a WR112 waveguide port at the center of the cylinder wall of the containing can. Phase noise measurements for a transistor oscillator locked to the n=10 (7.84-GHz) mode showed a 1/f(3) dependence for low offset frequencies, and a value of L(f)=-55 dB/Hz at an offset of 10 Hz from the carrier. The oscillator shows phase noise below the previously reported for any X-band source.  相似文献   

19.
A plasmonic device for high-efficiency optical switch is proposed based on graphene coupled photonic crystals structure. The finite-difference time-domain simulation results show that the transmission and reflection ratio can be controlled by tuning the parameters of the graphene strip, such as chemical potential or width. And the corresponding contrast ratio can be 25 and 26.8 for a single and double graphene strips coupled photonic crystals structure, respectively. The results in this paper will have potential application in nanosensors and integrated photonic circuits.  相似文献   

20.
The possibility of using photoinduced domain structures formed in lithium niobate crystals as a basis for tunable high-frequency spatial resonators of surface and bulk acoustic waves is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号